
Implementation of a Disaster Resilient
Linux Cluster with Storage Subsystem

Based Data Replication

Werner Fischer

DI P LOMARB E I T

eingereicht am

Fachhochschul-Diplomstudiengang

Computer- und Mediensicherheit

in Hagenberg

im Juni 2004

c© Copyright 2004 Werner Fischer

Alle Rechte vorbehalten

ii

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 4. Juni 2004

Werner Fischer

iii

Contents

Erklärung iii

Preface viii

Kurzfassung ix

Abstract x

1 Introduction 1
1.1 What is Linux? . 2
1.2 Why Linux? . 2
1.3 Why is it a worth-while question? 2
1.4 Overview of Main Results . 3
1.5 Structure of the Thesis . 3

2 Review of HA Cluster Technologies 5
2.1 Shared-Everything Cluster . 5
2.2 Shared-Nothing Cluster . 5
2.3 Shared Resource Protection 6

2.3.1 Lock Managers . 6
2.3.2 Quorum Mechanisms 7
2.3.3 Fencing Mechanisms 8

3 Disaster Recovery Basics 10
3.1 Tier Levels of Disaster Recovery 10
3.2 Networking Requirements . 11

3.2.1 Rapid Spanning Tree Protocol 11
3.2.2 Ethernet Channel Bonding 12

3.3 Possible Configurations . 12
3.3.1 Two Sites with Equal Number of Nodes 13
3.3.2 Two Sites with a Dominant Site 13
3.3.3 Three Sites . 15

iv

CONTENTS v

4 Data Replication 16
4.1 Requirements for Data Replication 16
4.2 Symmetric and Asymmetric Data Replication 16
4.3 Data Replication Mechanisms 17

4.3.1 Synchronous Replication 17
4.3.2 Non-Synchronous Replication 17
4.3.3 Asynchronous Replication 18
4.3.4 Combination of Synchronous and A- or Non-synchronous

Replication . 19
4.4 Data Replication Levels . 19

4.4.1 Data Replication at Server Level 19
4.4.2 Data Replication at Storage Subsystem Level 19
4.4.3 Data Replication within the SAN 20

4.5 Examples for Storage Subsystem Based Data Replication . . 20
4.5.1 IBM FAStT Remote Volume Mirroring 20
4.5.2 IBM ESS Peer to Peer Remote Copy 20

4.6 Allow Data Writes if Mirroring is Impossible? 21
4.6.1 Allow Data Writes without Mirroring 21
4.6.2 Deny Data Writes without Mirroring 21

5 State of the Art in Disaster Recovery 24
5.1 IBM GDPS for zSeries . 24

5.1.1 GDPS/PPRC . 24
5.1.2 GDPS/XRC . 25

5.2 IBM eRCMF . 25
5.3 IBM HACMP/XD . 25
5.4 HP-UX Disaster Tolerance Clusters 26

5.4.1 HP Extended Distance Clusters 26
5.4.2 HP Metropolitan Cluster 26
5.4.3 HP Continental Cluster 27

5.5 Sun Cluster 3.x . 27
5.6 OpenVMS Cluster . 28

6 Problem Statement 29
6.1 What is it all about? . 29
6.2 Analysis of today’s Solutions 30

6.2.1 No Linux Support . 30
6.2.2 Source Storage Devices at one Site only 30
6.2.3 Mandatory Quorum Devices at a third Site 30

6.3 What is the Benefit? . 30

CONTENTS vi

7 Implementation 31
7.1 Implementation Overview and Requirements 31
7.2 Cluster Manager Requirements 32

7.2.1 Support for more than two nodes 32
7.2.2 No mandatory quorum device 32
7.2.3 No mandatory fencing mechanisms 33

7.3 Storage Automation via Command Line Interface 33
7.4 Features of the Implementation 33
7.5 PPRC . 33

7.5.1 PPRC Basics . 33
7.5.2 Establishing PPRC Paths 34
7.5.3 Necessary PPRC Tasks 35

7.6 Service-dependent PPRC Configuration Files 37
7.7 The pprcvolume Script . 39

7.7.1 start Operation . 39
7.7.2 stop Operation . 42
7.7.3 PPRCfailback Operation 42
7.7.4 status Operation . 43
7.7.5 statusReport Operation 43
7.7.6 establishPPRC Operation 43
7.7.7 reEstablishPPRC Operation 43
7.7.8 terminatePPRC Operation 44
7.7.9 skipPPRCfailback Operation 44

7.8 Logging Configuration . 44

8 Tests 46
8.1 Test Environment . 46

8.1.1 Tivoli System Automation Configuration 47
8.1.2 pprcvolume Configuration 47

8.2 Initial Setup and Synchronization 47
8.3 Site A down . 47
8.4 ESS A down . 48
8.5 One Node at Site A down . 49
8.6 Network Connection between Site A and Site B down 50
8.7 PPRC between ESS A and ESS B down 51
8.8 Split Brain between Site A and Site B 52
8.9 Network at Site A down . 52
8.10 Network completely down . 53
8.11 Rolling Disaster Situation 1 53
8.12 Rolling Disaster Situation 2 54

9 Conclusions 56
9.1 Conclusions . 56
9.2 Possibilities of Future Enhancements 56

CONTENTS vii

A Configuration Files 58
A.1 pprcvolume Configuration for nfsserver 58
A.2 pprcvolume Configuration for mysql 59

B Contents of CD-ROM 61
B.1 Diploma Thesis . 61
B.2 LaTeX-Files . 61
B.3 Implementation . 62
B.4 Test configuration . 62
B.5 Bibliography . 62

Bibliography 63

Preface

This thesis is part of my studies for Computer and Media Security in Hagen-
berg, Austria. It was written in co-operation with IBM Deutschland GmbH,
Mainz.

I thank Alexander Warmuth, my tutor at IBM, for the great support
during my internship and writing of my thesis. Also thanks to Robert
Kolmhofer, assessor at the University of Applied Sciences Hagenberg. I
thank all the colleagues working in the Advanced Technical Support at IBM
Mainz for the input, ideas, and discussion during coffee breaks. Their hints
made me think about things again and again. Another big help was the
support of the Tivoli System Automation Team from Böblingen. Thank
you Enrico and Thomas! Thanks also to Paul McWatt, who did another
proof-read of the thesis.

Last, but not least, I want to thank my parents for the big support
through the four years of my studies.

viii

Kurzfassung

Hochverfügbare EDV Dienste gewinnen zunehmend an Bedeutung. Der hö-
chste Grad an Verfügbarkeit kann durch Desaster-beständige Cluster, die
über zwei oder mehrere Rechenzentren aufgebaut sind, erreicht werden. Im-
plementierungen von derartigen Architekturen gibt es für einige kommerzi-
elle UNIX Betriebssysteme sowie für Mainframes. Lösungen für Linux fehlen
nach wie vor in diesem Gebiet.

Ein springender Punkt bei der Implementierung eines Desaster-beständi-
gen Clusters ist die Spiegelung oder Replizierung von Daten. Moderne Spei-
chersysteme bieten eingebaute Hardwarefunktionen für die Datenspiegelung.
Diese haben einige Vorteile gegenüber Software-basierter Datenspiegelung.
Hardware-basierte Spiegelung führt im Gegensatz zur Software-basierten zu
keiner erhöhten Systemlast auf Cluster-Knoten. Ein weiterer Vorteil ist die
Transparenz von Hardware-basierter Spiegelung gegenüber Cluster-Knoten.
Dies vereinfacht das Hinzufügen, Ersetzen oder Entfernen von Knoten.

In der Diplomarbeit werden einige allgemeine Bereiche von hochverfüg-
baren Computer-Systemen diskutiert. Zu Beginn wird ein Überblick über
Hochverfügbarkeitstechnologien für lokale Cluster gegeben und einige Grund-
lagen über Disaster Recovery erklärt. Weitere Themen sind Details über
Mechanismen zur Datenreplizierung und der derzeitige Stand der Technik
im Bereich Disaster Recovery. Die Problemdefinition beschreibt das Fehlen
von Linux-Lösungen und die Einschränkungen von vorhandenen Lösungen
für andere Betriebssysteme. Als mögliche Lösung wird ein Prototyp für die
Automatisierung der Datenreplizierung durch Knoten eines Linux-Clusters
präsentiert. Das Verhalten dieses Prototyps wird im Testkapitel erläutert.

ix

Abstract

Highly available IT services are becoming more and more important. The
highest level of availability can be achieved with disaster resilient clusters
spanned across two or more computer center sites. Implementations of those
architectures are available for a number of commercial UNIX operating sys-
tems or mainframe systems. There is still a lack of Linux solutions in this
area.

One key point of a successful disaster resilient cluster implementation
is the mirroring or replication of data. Modern storage subsystems pro-
vide built-in hardware functions for this data mirroring. They have some
advantages compared to software-based mirroring. Unlike software-based
mirroring, they do not add any processing load to cluster nodes. Another
benefit is that mirroring is transparent to nodes through the SAN (Storage
Area Network). This makes adding, replacing or removing of nodes easily
possible.

The thesis discusses some general areas of high availability computing.
It starts with a review of high availability technologies for local clusters and
some disaster recovery basics. The next topics detail data replication and
the current state of the art in disaster recovery solutions. The Problem
Statement describes the lack of Linux solutions and limitations of solutions
for other operating systems. As a possible solution, a prototype for the au-
tomation of data replication through Linux nodes is presented. The behavior
of this prototype in disaster situations is shown in the Tests chapter.

x

Chapter 1

Introduction

Today many businesses need their IT services continuously available. There-
fore, High Availability (HA) Clusters are often used to prevent single points
of failure in the data center. In the case of a complete site disaster, these
cluster solutions cannot help any more as they lack cluster nodes located at
a different data center site.

Other solutions can integrate cluster nodes at different sites, they are
known as geographically dispersed clusters. These products often are normal
HA cluster managers with small modifications. Many solutions use a soft-
ware replication mechanism to keep a current copy of data at the second site
(known as disaster recovery site). Software based replication mechanisms
have some drawbacks, e.g. they cause an extra load on the hosts and have
to be maintained on all nodes of the cluster.

With the use of Storage Area Networks (SANs) in the computing envi-
ronment, all data is stored on centralized storage subsystems. These sub-
systems often provide hardware functions for data replication. As these
hardware based functions have been designed to work in disaster recovery
situations also without application cluster automation, they imply manual
interventions to accomplish a fail-over to the recovery site. Fully auto-
mated solutions are only available for Mainframe computing environments
and some commercial UNIX operating systems.

The goal of the diploma thesis is the integration of automated storage
mirroring management functions with common Linux high availability clus-
ter managers. The implementation is demonstrated in conjunction with
IBM Tivoli System Automation for Linux (TSA)1 as cluster manager. TSA
is only used as an example. The implementation itself is principally inde-
pendent of the cluster manager used. With minor adaptations the prototype
should also work with other UNIX operating systems.

1http://www.ibm.com/software/tivoli/products/sys-auto-linux

1

CHAPTER 1. INTRODUCTION 2

1.1 What is Linux?

The name Linux2 refers to the kernel originally developed by Linus Torvalds.
Most people use the name Linux also for the GNU/Linux3 operating system.
When talking about Linux, the complete GNU/Linux operating system is
meant through this thesis.

1.2 Why Linux?

Linux becomes more and more common, also in data center environments.
One big advantage is the number of ports of Linux for different hardware
architectures. No other UNIX derivate supports more hardware architec-
tures than Linux. With a broad usage of Linux in the company, system
administrators can use their Linux knowledge on all the different hardware
architectures where Linux is used.

Linux is Open Source. Open Source Software has many advantages com-
pared to commercial software. Without the power of Open Source Software
Linux would not be available for so many different hardware architectures.

Disaster resilient cluster solutions with storage subsystem based data
replication are partly available for other UNIX operating systems. Linux
has been neglected in this area up to now.

As Linux (both the kernel and the whole distribution) is highly customiz-
able, it can be cut down to provide only the functions that are really needed.
This saves computing power and minimizes the risks of security flaws (the
more software is running on a system, the higher is the probability of secu-
rity flaws). Both characteristics (economical use of computing power and a
high level of security) are significant for high availability clusters.

1.3 Why is it a worth-while question?

In a disaster situation automated processes will help to minimize downtime
and to prevent human errors. The white-paper IBM Storage Infrastructure
for Business Continuance [KP03] mentions ten lessons learned from 9/11.
The most important point is “Successful recovery necessitates a greater de-
pendency upon automation rather than people”. Crucial IT administrators
may not be available in a disaster situation to execute critical tasks for a
site fail-over. As a result, all necessary steps for a successful fail-over must
be as simple as possible. This goal can only be achieved with a high level of
automation.

2http://www.kernel.org
3http://www.gnu.org/gnu/linux-and-gnu.html

CHAPTER 1. INTRODUCTION 3

1.4 Overview of Main Results

Designing a disaster resilient cluster architecture is always a big challenge,
independent of the operating system. Customer demands on those solutions
may differ in many ways. This makes a common solution that fits most com-
panies’ needs impossible. The thesis discusses the main challenges and gives
an idea of how disaster resilient clusters can be implemented with storage
subsystem based data replication. The implemented prototype shows the in-
tegration of automated storage management with high availability clusters.
This prototype is not suited for production use without further investiga-
tion and testing. As mentioned above, disaster resilient clusters must be
individually designed for every single implementation.

1.5 Structure of the Thesis

Chapter 1: Introduction

This introduction to the thesis.

Chapter 2: Review of HA Cluster Technologies

This chapter explains some basics of high availability clustering. As disaster
resilient clusters are often implemented as geographically dispersed clus-
ters, these principles are also valid for them. Differences between shared-
everything and shared-nothing clusters are shown, as well as an overview
about shared resource protection.

Chapter 3: Disaster Recovery Basics

Some concepts are discussed in this chapter. The Tier Levels of Disaster
Recovery help to compare different solutions. Networking requirements nec-
essary for disaster resilient configurations are explained. Finally, possible
configurations with two or three computer center sites are discussed.

Chapter 4: Data Replication

Data replication is a very important subject of disaster resilience. The re-
quirements for data replication are explained. Also differences between sym-
metric and asymmetric replication are explained. Replication mechanisms
(synchronous, non-synchronous and asynchronous) are compared, replica-
tion levels explained and some example implementations mentioned. Finally
there is a discussion about the question “Allow Data Writes if Mirroring is
Impossible?”.

CHAPTER 1. INTRODUCTION 4

Chapter 5: State of the Art in Disaster Recovery

This chapter examines important disaster recovery solutions. The described
products include implementations for mainframes, commercial UNIX oper-
ating systems and the OpenVMS operating system.

Chapter 6: Problem Statement

Describes the problem and evaluates today’s solutions presented in chapter
5. It gives an outlook of the benefits of a Linux based solution.

Chapter 7: Implementation

This chapter focuses on the implementation of a prototype for automation
of data replication management. The prototype is implemented as a BASH4

script.

Chapter 8: Tests

Different tests show the behavior of the prototype in certain disaster situa-
tions.

Chapter 9: Conclusions

Final conclusions and some “lessons learned” can be found in this chapter.

4http://www.gnu.org/software/bash

Chapter 2

A Brief Review of High
Availability Cluster
Technologies

2.1 Shared-Everything Cluster

In a shared-everything cluster, every cluster node can access shared resources
like hard disks. To coordinate the access of all nodes, a lock manager is
necessary. If a node wants to use a shared resource, it queries the lock
manager and asks for access. When it does not use the resource any more,
it sends a message to the lock manager so that it releases the access to this
resource. Lock managers are implemented either as a single lock manager
(SLM), redundant lock manager (RLM) or distributed lock manager (DLM).

To allow parallel access to shared disks, a special file system must be
used. For Linux OpenAFS1, OpenGFS2, Sistina GFS3 or IBM GPFS4 are
available. They all use lock managers to coordinate access to the shared
disks.

2.2 Shared-Nothing Cluster

In a shared-nothing cluster, nodes only get exclusive access to a shared
resource. While one node owns a resource, no other node may access it in
any way. A shared-everything cluster for example would allow concurrent
read access to disk volumes. This is not possible in shared-nothing clusters.
In the case of a fail-over or manual switch-over of services to another node,

1http://www.openafs.org
2http://opengfs.sourceforge.net
3http://www.sistina.com/products gfs.htm
4http://www.ibm.com/servers/eserver/clusters/software/gpfs.html

5

CHAPTER 2. REVIEW OF HA CLUSTER TECHNOLOGIES 6

the owning node must release the resource to allow access to it by another
node.

In case of split-brain situations (where the cluster nodes are still alive,
but cannot communicate with each other) there must be a guarantee that
no single resource is owned by two nodes at the same time. To prevent this,
different quorum and resource fencing mechanisms are possible as shown
later.

2.3 Shared Resource Protection

2.3.1 Lock Managers

Lock managers are mandatory for shared-everything clusters. They can also
be used for resource protection in shared-nothing clusters.

Single Lock Manager

If all locking information is stored only at a single server this server is referred
to as single lock manager (SLM). As locking information is not available at
another server, the SLM is a single point of failure. It is not well suited
for high availability clusters. For example, OmniLock from Sistina can be
configured as a SLM.

Redundant Lock Manager

To improve this situation, the SLM can be configured in a sub-HA-cluster.
This would be a simple two node shared-nothing cluster, which runs the
lock manager. The locking functions need not be changed and the whole
implementation can be the same as with a SLM. In such configurations, the
lock manager is called redundant lock manager (RLM). An example again
is OmniLock.

Distributed Lock Manager

Other lock protocols use a distributed lock manager (DLM). OpenGFS uses
such a DLM, called OpenDLM5. As an example the algorithm used in the
OpenDLM implementation [Cah03] is described here. Knowledge about a
lock is distributed over three areas:

• Directory

• Master

• Requester/Grantee
5http://opendlm.sourceforge.net

CHAPTER 2. REVIEW OF HA CLUSTER TECHNOLOGIES 7

If a node wants to request a lock for a resource, it sends a query to the
responsible directory server for that resource. The information, which clus-
ter node is the directory server for a special resource, is determined by a
fixed algorithm. Each node in the cluster acts as directory server for a range
of resources. The directory server holds the information about whether a
resource has ever been requested before and which node is the master server
for the resource. If the resource has never been requested before, the in-
quiring node will be the master server for this resource. In the other case,
the inquiring node sends a message to the already defined master server.
In the case that a node dies, the lock information of this node will be lost.
The other nodes which accessed resources that were locked by that node
will re-request the locks. This re-requesting works like requesting a resource
that has never been requested before.

2.3.2 Quorum Mechanisms

Quorum mechanisms are only useful for shared-nothing clusters. They are
not suited for shared-everything clusters.

Quorum Disk

This mechanism uses a dedicated shared disk for storing quorum informa-
tion. The disk must be accessible to all cluster nodes. As all nodes need both
write and read access to the shared disk, a special data structure that allows
concurrent access has to be used. For example, this could be implemented
in the following way:

Every node has its own area to write on the shared disk. Read access
is allowed to the whole disk. When a node wants to take over a resource,
it must check if no other node owns the resource at that time. It sets a
lock indicator in its write-area. This prohibits other nodes from acquiring
resources. Then the node writes the information that it owns the resource
from now on and releases the lock. If a node loses its connection to the
quorum disk it must immediately release all shared resources as other nodes
will take them over. To make the detection of failed nodes possible, every
node must update a heartbeat information in its write area on a regular
basis. If the heartbeat information is out of date, the resource locks for that
node are not valid any more.

Real Quorum of Servers (at least three Cluster Nodes)

Another possibility is to work with the real quorum count of cluster nodes.
Therefore, at least three cluster nodes must be configured. Cluster nodes
may only use shared resources if they are part of the majority of cluster
nodes. If a single node cannot communicate with the other nodes anymore,

CHAPTER 2. REVIEW OF HA CLUSTER TECHNOLOGIES 8

it must immediately release all resources. In case of an even number of nodes,
a tie-breaker must decide which sub-cluster should run the applications.

Tie-Breaker Mechanisms

Tie-Breakers can be used with two-node clusters or combined with real quo-
rum when more than two nodes are used. If a node, that is running services
in a two node cluster, fails (or half of the servers in a cluster with more than
two nodes), the other node cannot be sure if the node really died or if only
the communication with the other node failed. In the latter case, the node
that seems to be broken may still use shared resources. Therefore surviving
nodes must not start resources in a tie situation. Services that are already
running on surviving nodes will remain running. Before the other services
can be brought up again, the tie situation must be resolved. The following
tie-breaker solutions allow this.

Manual Tie-Breaker With a manual tie-breaker configured, an operator
must decide which node may bring up shared resources. In case that half
of the nodes are not reachable anymore, one of the surviving nodes asks
the operator if it may bring up services. The operator enters a command
that allows the node to bring up services only after he has verified that no
associated shared resource is in use by another node.

SCSI Tie-Breaker Shared storage is mandatory for this mechanism. All
cluster nodes need physical access to a shared SCSI disk. In case of a
tie situation the nodes try to get a SCSI Reservation of this shared SCSI
disk. Only nodes which can communicate with the node that got the SCSI
Reservation may use shared resources. All other nodes must immediately
release all resources.

Quorum Server as Tie-Breaker Some shared-nothing cluster imple-
mentations use so-called quorum servers for shared resource protection in
tie situations. Quorum servers work similarly to lock managers. The differ-
ence is that they only grant exclusive access to shared resources. Quorum
servers will only be queried in case of tie situations.

2.3.3 Fencing Mechanisms

Quorum mechanisms are software-level protocols which cannot assure in
every case that shared resources are not used simultaneously. The reason
is that quorum cannot guarantee the release of shared resources used by
an unreachable node in a set period of time. If a node is stale and has no
quorum anymore, it should release shared resources immediately. But there
are situations that can delay the release, as described in [Rob01].

CHAPTER 2. REVIEW OF HA CLUSTER TECHNOLOGIES 9

Fencing mechanisms try to quickly and reliably detach stale nodes from
shared resources. The difference to quorum mechanisms is the fact that
fencing mechanisms do the detachment without any cooperation of the un-
reachable nodes.

Resource Fencing

Resource fencing uses hardware features of shared resources that guarantee
the exclusive use of the shared resource. For a shared SCSI disk, the SCSI
reserve or SCSI persistent reserve attribute can assure this exclusive access.
If the SCSI disk is a virtual LUN in a SAN, access rights can also be defined
in the SAN switch or the storage subsystem itself. If the errant node tries to
access the shared resource again, the access is denied through such hardware
mechanisms.

Resource fencing must be implemented for each type of resource sepa-
rately. It requires support from the operating system for the implemented
fencing type.

System Reset Fencing (STONITH)

STONITH (Shoot The Other Node In The Head) is another approach of
fencing. Errant nodes are reset and so forced to reboot. On startup, the
node tries to rejoin the cluster. Many problems that cause a node to fail can
be repaired through a reboot. If a node died completely, it cannot reboot
anymore. It is always guaranteed that the errant node does not access any
shared resource. Other nodes can acquire shared resources without risk.

STONITH is often implemented via smart power switches or Intel’s
IPMI6. A detailed description on STONITH can be found in [Rob01].

6Intelligent Platform Management Interface, see http://developer.intel.com/design/
servers/ipmi

Chapter 3

Disaster Recovery Basics

3.1 Tier Levels of Disaster Recovery

Disaster Recovery can be implemented in different ways, depending on the
business needs and the available budget. The different ways can be consid-
ered as the Seven Tiers of Disaster Recovery, as described in detail in [Wea04,
p. 45]. The model was developed by the SHARE user group1 in 1992. It
can be seen as a common model for disaster recovery solutions and makes
it easier to compare different implementations.

Tier 0: No off-site data This first level represents “no disaster recovery
possibilities at all”. There is no data backup, no backup hardware or any
kind of documentation on how to recover from a disaster. In case of a
disaster, recovery usually will be impossible.

Tier 1: Data backup with no Hot Site Tier 1 represents “regular
data backups, which are stored off-site”. After a disaster, the copies on the
backup media are still available. All new data, which was created after the
last backup cycle will be lost. Before the data can be restored, new hardware
must be installed.

Tier 2: Data Backup with a Hot Site This Tier is similar to Tier 1, as
backup media are stored off-site and will not be destroyed during a disaster
at the production site. But at Tier 2 the backup is stored at a secondary
site with IT-infrastructure and facilities. Like Tier 1, all new data since the
last backup cycle will be lost in case of a disaster at the production site. As
IT-infrastructure is available at the secondary site, a shorter recovery time
is possible.

1SHARE is a non-profit, voluntary organization whose member organizations are users
of IBM information systems. It was founded in 1955. Details about SHARE can be found
at www.share.org.

10

CHAPTER 3. DISASTER RECOVERY BASICS 11

Tier 3: Electronic vaulting These solutions use techniques from Tier 2.
Additionally, some data is electronically vaulted. This allows the creation
of mission-critical data backups more often.

Tier 4: Point-in-time copies Tiers 1 and 2 deliver the backup data via
the PTAM (Pickup Truck Access Method) to the secondary site. Tier 4 also
provides point-in-time copies, but not tape based as the lower Tiers. Tier 4
solutions are disk based and create the point-in-time copies via data links.
These copies can be built more often, so less data will be lost in case of a
disaster.

Tier 5: Transaction integrity These solutions are often database-driven,
e.g. two-phase commit solutions. They provide consistency of data between
the production and the recovery site. Data loss will be little (often no data
loss at all). Tier 5 solutions can only be implemented at application level.

Tier 6: Zero or little data loss Disaster recovery at Tier 6 is realized via
application-independent replication mechanisms (e.g. storage sub-system
based data replication). Tier 6 solutions are used whenever no (or only
a minimum of) data loss is acceptable. They allow a rapid restore of IT
services.

Tier 7: Highly automated, business integrated solution As with
Tier 6, data copies at Tier 7 are maintained through application-independent
replication mechanisms. The difference is that Tier 7 solutions include a high
level of automation, which minimizes the risk of operational errors in the
case of a disaster. The implementation of a prototype for a Tier 7 solution
for Linux hosts is the content of this thesis.

3.2 Networking Requirements

To reduce the number of necessary site fail-overs it is wise to increase the
availability of the network infrastructure. The following technologies help
to reduce network outages.

3.2.1 Rapid Spanning Tree Protocol

The Rapid Spanning Tree Protocol (RSTP) is a standard of the Institute
of Electrical and Electronics Engineers, Inc. [Ins04]. It is the successor of
the Spanning Tree Protocol (STP). The main advantage of the new RSTP
is the reduced rebuild time compared to the STP.

RSTP supports, preserves and maintains the quality of the media access
control in computer networks. It makes it possible to build redundant paths

CHAPTER 3. DISASTER RECOVERY BASICS 12

between network components. This increases the availability of the network
in case of single outages. RSTP fulfills the following requirements [Ins04, p.
24]:

1. It eliminates data loops.

2. It provides highly available network communication by automatic re-
configuration of the Spanning Tree topology in case of outages of LAN
components.

3. During changes of the network topology (e.g. because of outages),
the new active topology will stabilize within a short, known bounded
interval. This minimizes the time of network outages between any
pair of end stations on the network. While typical STP networks need
about 30 to 60 seconds to bring the network up again, RSTP can
achieve this within a few hundred milliseconds to about five seconds
(depending on the vendor implementation).

4. The active topology is predictable and reproducible. It can be selected
through RSTP parameters.

5. RSTP is transparent for end stations on the network.

6. Communication between RSTP components needs only a very small
fraction of the total available bandwidth.

Because of the faster recovery time, it is wise to prefer RSTP to STP. A
possible setup with RSTP is shown in figure 3.1.

3.2.2 Ethernet Channel Bonding

Ethernet channel bonding2 for Linux enables network configurations with
no single point of failure. Besides trunking and IEEE802.3ad Dynamic Link
Aggregation, Ethernet channel bonding supports active-backup configura-
tions for high availability configurations [Dav00]. With active-backup mode,
nodes are connected to two switches. Only one of the two links is active at
a time. In case of a outage of a switch, network cable or network card,
the backup link will be activated. Nodes in figure 3.1 use Ethernet channel
bonding.

3.3 Possible Configurations

All of today’s available disaster resilient cluster solutions use some kind of
quorum or lock manager for shared resource protection. Fencing mechanisms
do not seem to be suitable for geographical dispersed configurations. Both
quorum mechanisms and lock managers require a majority of votes to switch

2http://sourceforge.net/projects/bonding

CHAPTER 3. DISASTER RECOVERY BASICS 13

Figure 3.1: Networking in a geo-cluster with RSTP and Ethernet Channel
Bonding.

services between nodes. In standard configurations each node has one vote.
Some solutions allow an assignment of an user-defined number of votes to
each node.

3.3.1 Two Sites with Equal Number of Nodes

At least two different sites are necessary for the implementation of a disaster
resilient cluster. The configuration in figure 3.2 shows two sites, each with
the same number of votes. A tie situation will occur in case of a split brain
or disaster at a site. Manual interaction is necessary to resolve the tie.

3.3.2 Two Sites with a Dominant Site

In this configuration (see figure 3.3) one site owns more votes than the other
site. This can be an advantage over the previous solution. If a disaster
destroys the site which owns the minor number of votes, the remaining site
can automatically take over services.

But there are also drawbacks of this configuration. In case of a disaster at

CHAPTER 3. DISASTER RECOVERY BASICS 14

Figure 3.2: Geo Cluster with two balanced sites.

Figure 3.3: Geo Cluster with two sites where one is dominant.

the dominant site, the remaining site alone has less than half of all votes. All
running services at the remaining site will be stopped immediately. This is
necessary as the remaining site cannot distinguish between a disaster at the
dominant site and a split brain situation. In the latter case, the dominant
site will bring up all services as it owns more than the half of all votes.

A rolling disaster at the dominant site is even more dangerous. It can
happen that a rolling disaster (e.g. a fire) first destroys the communication
paths between the two sites. The undamaged site will shut down all services,
while nodes at the other site bring up services that were running at the
undamaged site. Until the rolling disaster destroys the nodes and the storage
system, data which cannot be mirrored anymore will be created. When the
dominant site is completely destroyed, all those data updates are lost. This
effect is known as “creeping doom scenario” [Fre02].

CHAPTER 3. DISASTER RECOVERY BASICS 15

Figure 3.4: Geo Cluster with three sites.

3.3.3 Three Sites

Three site solutions as shown in figure 3.4 allow automatic restart of services
after a disaster at a single site. The primary and the secondary site can run
services. The third site hosts quorum servers, quorum devices or arbitrator
nodes.

In case of quorum servers or quorum devices at the third site, each of the
other two sites owns half of all votes. If the two sites cannot communicate
with each other anymore, they try to reach the quorum servers or quorum
devices at the third site.

Arbitrator nodes at the third site work in a different way. These arbitra-
tor nodes are normal cluster nodes, running the same cluster software as the
other nodes. They cannot access the data as no storage system is installed
at the third site. So they are configured not to start services in any case.
As the arbitrator nodes are normal cluster nodes, the number of votes is
distributed across the three sites.

In case of a disaster at site A or site B, all services will be brought up at
the remaining site. An outage of site C will never interrupt running services.

Chapter 4

Data Replication

4.1 Requirements for Data Replication

Data replication is a key point in disaster resilient architectures. To prevent
data loss, the following areas must be considered:

Data Consistency: preserves the write order of data records. This means
that the data is immediately usable and recoverable. Inconsistent data on
the other side is not recoverable. Replication mechanisms that produce
inconsistent data, like non-synchronous replication, must be combined with
other technologies to provide usable point-in-time copies. Data consistency
does not mean that the data is current.

Data Currency: indicates how up-to-date data at the recovery site is.
The different data replication mechanisms achieve different levels of data
currency.

4.2 Symmetric and Asymmetric Data Replication

Most of todays solutions, whether hardware- or software-based, provide
asymmetric data replication. Data updates are written from one site to
the other, but not in both directions at the same time. Write access is
only possible at the primary site, where the source volume is located. The
target volume at the secondary site may only be accessible in read-only
mode. Before the volume at the secondary site can be mounted, the mirror
relationship must be terminated or reversed.

Symmetric data replication can transfer updates from one site to the
other in both directions at the same time. Therefore it allows write access
to both copies of the data. It requires a locking mechanism to prevent data
corruption.

16

CHAPTER 4. DATA REPLICATION 17

4.3 Data Replication Mechanisms

4.3.1 Synchronous Replication

Synchronous replication mechanisms guarantee the same consistent dataset
both at the production and the recovery site as long as the links between the
two sites are up and running. This guarantee is achieved as acknowledgments
for successful write operations are sent to the calling processes only after the
write operation was also successful at the recovery site. Figure 4.1 details
the data flow:

1. A process writes data to the storage.

2. The storage subsystem (or some kind of software-based data replica-
tion software, like a Logical Volume Manager or Software RAID) sends
the write request to a second system at the recovery site.

3. The second system on the recovery site acknowledges the write oper-
ation.

4. Now the local storage subsystem (or software-based replication soft-
ware) sends the acknowledgment also to the calling process.

Although no single data record is lost in case of an outage of the primary
storage system, the use of synchronous replication also has limitations. The
main problem is the latency caused by waiting for the write acknowledg-
ments. The signal propagation delay between the sites is the main determin-
ing factor for this latency. Therefore, the distance between the production
and the recovery site is limited. Today’s synchronous replication mecha-
nisms support up to 100 km. But those distances can influence the response
time of applications noticeably. Extensive testing of the whole system is
necessary before going in production use.

There is one case where the logical order of data writes is not guaranteed.
During an outage of the replication link the servers on the primary site may
continue to write data to the primary storage system (depending on the
implementation). If data has been written at the primary site before the
replication link comes up again, all new and changed data will have to be
transfered to the recovery site. The new and changed data tracks are not
written to the recovery site in the same order as they have originally been
written to the primary storage system during the time of the outage. During
this resynchronization, the data at the recovery site will be be inconsistent.

4.3.2 Non-Synchronous Replication

If synchronous replication causes response times at the production site that
are too long, non-synchronous or asynchronous replication strategies can
help. As the name implies, the data in the two storage systems is not

CHAPTER 4. DATA REPLICATION 18

Figure 4.1: Data flow during synchronous replication.

synchronous any more. The storage system at the production site sends
an acknowledgment to the calling process as soon as it has written the
data locally. After it acknowledges the write, it sends the write operation
to the second storage system at the recovery site. With that behavior,
the response time at the production site is nearly the same as it would be
without replication.

One drawback is that the second system is not completely up to date
(data currency). Another big drawback of non-synchronous replication is
that write-order is not preserved. Therefore the data on the secondary
site is not consistent and cannot be used directly. Consistent snapshots
have to be taken at certain periods of time depending on the acceptable
amount of last data. To create usable copies of the data at the secondary
site, the replication connection is switched to synchronous mode. When
synchronization is reached the production applications are stopped and a
point-in-time copy is made at the secondary site. After that, the connection
can be switched back to non-synchronous and the applications are restarted
at the production site.

4.3.3 Asynchronous Replication

Asynchronous replication mechanisms work almost the same way as non-
synchronous mechanisms. The main difference is that asynchronous replica-
tion preserves the order of writes. Therefore the data set at the secondary
system is consistent, although not completely up-to-date.

CHAPTER 4. DATA REPLICATION 19

Figure 4.2: Combined synchronous and a/non-synchronous replication.

4.3.4 Combination of Synchronous and A- or Non-synchronous
Replication

Whenever synchronous data copies and long distances are needed, repli-
cation mechanisms can be combined. For this approach, three sites are
necessary. The first site acts as production site, a second site (near enough
to enable synchronous replication) as intermediate site, and a third site as
remote site. Figure 4.2 illustrates the replication.

4.4 Data Replication Levels

4.4.1 Data Replication at Server Level

Data replication at server level (also known as software-based data replica-
tion) implements the storage virtualization within the server itself. Exam-
ples are Logical Volumes Managers for commercial UNIX operating systems,
Linux Software RAID or the Linux Distributed Replicated Block Device
(DRBD) [Rei00]. A detailed overview about different solutions for data
replication at server level can be found in [Mit04]. These solutions can be
very cost efficient, but they also cause more overhead as soon as more servers
participate in the replication domain. Furthermore, as these products oper-
ate on the server level, they also cause an extra load on the servers.

4.4.2 Data Replication at Storage Subsystem Level

The main advantage of data replication at storage subsystem level is its
invisibility to the application servers. It also causes no extra load on the
servers, as they access the LUNs the same way as without data replication.
Depending on the data throughput, the performance of the storage subsys-
tem can decrease—an effect that can have an impact on the application.

CHAPTER 4. DATA REPLICATION 20

4.4.3 Data Replication within the SAN

Sometimes, different storage subsystems from different vendors are located
at the primary and secondary site. This is often the case after a merge of
two companies, when the new firm uses one location as production site and
the other as recovery site. Replication approaches at storage subsystem level
only work within products from the same manufacturer. With the use of
the new virtualization engines, the data replication can be done at the SAN
level. This causes no extra load or maintenance on the servers and allows
the connection of storage subsystems from different vendors.

4.5 Examples for Storage Subsystem Based Data
Replication

4.5.1 IBM FAStT Remote Volume Mirroring

Remote Volume Mirroring (RVM) is a premium feature of the IBM FAStT1

storage system. It supports synchronous replication only. When a server
sends a write request to the FAStT storage subsystem, the data will first be
logged in a so-called repository drive. Then the controller writes the data
to the primary logical drive, and also sends a remote write operation to the
secondary storage subsystem. After the data is stored on both the primary
and the secondary logical drive, the log record on the repository drive will be
deleted. Now the server gets an I/O completion indication from the primary
FAStT.

In case of a link failure, the servers at the primary site can still write to
the logical volumes. As the primary FAStT subsystem detects the link fail-
ure (or outage of the secondary FAStT) it sends I/O completion indications
back to the hosts as soon as the data is written to the local disks. There is
no way to change this behavior.

The synchronization algorithm is not capable of partial resynchroniza-
tions to start or resume the replication. After every link failure, a full
synchronization of all mirrored volumes is performed. This can leave the
data at the secondary site in an inconsistent state for a long time.

4.5.2 IBM ESS Peer to Peer Remote Copy

Peer to Peer Remote Copy (PPRC) is the replication technology of IBM’s
Enterprise Storage Server (ESS)2. There are different versions of PPRC
available, depending on the ESS model and the version of the installed
firmware (licensed internal code—LIC). The following description accounts

1http://www.storage.ibm.com/disk/fastt
2http://www.storage.ibm.com/disk/ess

CHAPTER 4. DATA REPLICATION 21

for the latest version of PPRC at the time of writing, PPRCv2 with LIC
2.3.

PPRC supports synchronous (PPRC-sync) and non-synchronous (PPRC-
XD) replication. A combination of both is a available as Asynchronous Cas-
cading PPRC (see section 4.3.4). For availability and performance reasons,
multiple physical links can be used for PPRC connections. The behavior in
case of a link failure is configurable. If write operations should be denied in
case of a link failure, a feature called Consistency Groups (see section 4.6.2)
can be enabled.

The synchronization algorithm is highly optimized. It is possible to
suspend a PPRC connection without the need of a full synchronization af-
terwards. The secondary site can be updated later through the transmission
of only the data tracks that are out of sync. This behavior saves bandwidth
and also is faster than a full synchronization. During the resynchronization
the data of the target volume is not consistent.

The functions “PPRC Failover” and “PPRC Failback” allow the preser-
vation of volume states, even in case of a disaster (as long as the ESS on
the production site is not destroyed). After the production site is available
again, it is possible to transmit only the changed tracks back to the pro-
duction site to have both sites synchronous again. Details can be found
in [Cea04, p. 417].

4.6 Allow Data Writes if Mirroring is Impossible?

Depending on customer needs, different strategies in case of a mirror link
outage are possible.

4.6.1 Allow Data Writes without Mirroring

Some customers need the highest application uptime possible. If all mir-
roring links (PPRC links) fail, services should continue to run. As a conse-
quence, none of the new data will be mirrored to the other site. Therefore, a
rolling disaster which first destroys the PPRC links can be very dangerous.
Clients located outside of all computer center sites can still use the highly
available applications and issue data writes. For example, these writes could
be financial transactions, which cause money transferals to other banks. The
debit entries are only written to one storage system. If the rolling disaster
destroys this storage system completely later on, the debit entries are lost.
But the credit entries may have been transfered to other banks.

4.6.2 Deny Data Writes without Mirroring

Other customers insist on data mirroring whenever applications are running.
They would rather stop services for a period of time, instead of allowing

CHAPTER 4. DATA REPLICATION 22

changes to the data. As a consequence applications must be shut down as
soon as data mirroring is not possible anymore.

PPRC Consistency Groups

PPRC supports blocking of write operations in case of a complete PPRC
link outage through the Consistency Group option [Cea04, p.74]. With
this option set, SCSI or FCP (fibre channel protocol) attached open sys-
tems receive a QUEUE FULL (QF) status byte code if write operations
cannot be completed because of loss of PPRC links. The QF status indi-
cates a full SCSI command queue. Data writes are not placed in the queue.
Linux tries to insert the command in the SCSI mid-level queue through the
scsi mlqueue insert() function [You97]:

Generic mid-level SCSI queueing: The point of this is that we
need to track when hosts are unable to accept a command be-
cause they are busy. In addition, we track devices that cannot
accept a command because of a QUEUE FULL condition. In
both of these cases, we enter the command in the queue. At
some later point, we attempt to remove commands from the
queue and retry them.

The duration of a QF state can be configured in the ESS. The default
value for the Consistency Group Time Out is set to two minutes.

Reactions on Queue Full

In case of a QF state, applications may behave in different ways. Some may
continue to run, others may freeze or cause other unexpected behavior. De-
pending on the monitoring implementation of the cluster manager, storage
or applications will be detected as failed. This causes the cluster manager
to fail-over applications. As the applications cannot be started on nodes at
the same site, a site fail-over is executed. The volumes at the recovery site
will become PPRC sources in suspended state. Applications start at the
recovery site, but data writes will not be mirrored.

To prevent this behavior, the cluster manager must be instructed to stop
the applications. This is the only secure way to prevent data writes in case
of a failure of all PPRC links.

A possible Solution with ESS SNMP Traps

The ESS can be instructed to send SNMP traps if a copy pair in a consistency
group becomes suspended and the source volume enters QF. Multiple trap
receivers are supported. An enterprise management station should be one of
the trap receivers. This ensures notification of system administrators in case
of critical situations. Other receivers are snmptrap-daemons running on the

CHAPTER 4. DATA REPLICATION 23

Figure 4.3: Handling of SNMP traps in a split-brain situation.

cluster nodes, one at each site. The two snmptrap-daemons are configured
as high availability services within the cluster. The daemon responsible for
site A may only run on nodes located at this site. The same applies for the
daemon at site B. The two daemons are necessary to guarantee the right
behavior even in case of a split-brain situation. It must be possible for each
site to separately shut down all services cleanly.

An example for an automated shutdown of applications is shown in figure
4.3:

1. A split brain situation breaks all PPRC and network links.

2. Nodes receive a QF state on write requests.

3. ESS’ at both sites send SNMP traps to the trap receivers.

4. Trap receivers execute stop commands for the applications.

Unfortunately SNMP traps do not have guaranteed delivery. If the LAN
connection to an ESS is broken, SNMP traps cannot be sent to the trap
receivers. It is possible to monitor the sending of SNMP traps through
test traps. The sending of those test traps can be caused by cluster nodes
through special command line interface commands (esscli create snmp).
If these test traps cannot be received by the trap receivers, applications must
be stopped. This is necessary as broken PPRC links traps would not be
received. Although this may help in most situations, it is still theoretically
possible that test traps are delivered correctly while other urgent traps are
lost. As a consequence, mission critical applications that absolutely must not
run if mirroring is impossible, should not be automated with a graphically
dispersed cluster.

Chapter 5

State of the Art in Disaster
Recovery

The following products and service offerings are examples for Tier 6 and Tier
7 disaster recovery solutions. They are either available for IBM z/OS, IBM
AIX or HP UX and are described to give an overview of the possibilities in
automated disaster recovery.

5.1 IBM GDPS for zSeries

GDPS (Geographically Dispersed Parallel Sysplex) is a service offering from
IBM that implements a Tier 7 solution for IBM’s z-Series mainframes1.
There are different versions of GDPS. All of them use hardware-based data
replication. Details about GDPS can be found in [Kea04, p. 333] and
[Wea04, p. 274].

5.1.1 GDPS/PPRC

GDPS/PPRC uses synchronous PPRC and allows applications to run at
both sites at the same time. However, all applications (whether they run at
the primary or secondary site) will read from and write to the disk system
at the primary site. This can lead to longer response times for applications
running at the secondary site. An application running at the secondary site
writes data to the primary disk subsystem. Then, the data must be mir-
rored back to the secondary site. After the primary disk subsystem gets the
information that the data has been mirrored, it sends the acknowledgment
back to the application.

Logical Units (virtual disks) for open systems (Unix, Microsoft Windows,
Linux, Novell Netware and so on) can be integrated into GDPS/PPRC. This

1http://www.ibm.com/servers/eserver/zseries

24

CHAPTER 5. STATE OF THE ART IN DISASTER RECOVERY 25

function—Open LUN management—has been implemented because depen-
dencies between mainframe and open system applications became more and
more frequent. GDPS/PPRC only integrates the data replication automa-
tion for open systems. It does not automate the restart of open system
applications.

5.1.2 GDPS/XRC

GDPS/XRC is an asynchronous disaster recovery solution and is based on
Extended Remote Copy (XRC). XRC is a combined hardware and software
remote copy implementation. It uses time stamps to preserve the order
of write operations. As the data replication between the primary and sec-
ondary site is asynchronous, the data at the secondary site will always be
slightly behind the data at the primary site. As a benefit XRC provides data
replication without any distance limits and only little application latency.
As XRC manages the data consistency itself, GDPS must only provide the
automation of the recovery process. More details about XRC can be found
in [Kea04].

5.2 IBM eRCMF

Enterprise Remote Copy Management Facility (eRCMF) also is a service
offering from IBM. It can be implemented as a Tier 4 or Tier 6 solution for
open system disaster recovery [Wea04, p. 286]. eRCMF is well suited for
very large amounts of data, as it can preserve data consistency across mul-
tiple Enterprise Storage Servers. eRCMF uses productivity center machines
(PCMs), running on dedicated AIX servers.

eRCMF does not automate the restarting of servers and applications. It
makes data volumes directly available at the secondary site after a disaster
at the primary site. There is no need to bring up volumes and to start repli-
cation fail-over tasks manually. When using synchronous PPRC, eRCMF
works as a Tier 6 disaster recovery solution. eRCMF also supports PPRC-
XD (non-synchronous data replication) as a Tier 4 solution. The creation
of the necessary point-in-time copies can be automated with eRCMF.

5.3 IBM HACMP/XD

HACMP is a high availability clustering solution for local clusters running
AIX operating systems. The optional package HACMP/XD also allows fail-
over of services to nodes running at a different site. HACMP/XD can be
implemented with synchronous PPRC for distances up to 103 km between
the sites or with IP based mirroring for unlimited distance support. De-
tailed information about HACMP/XD can be found in [Wea04, p. 296]

CHAPTER 5. STATE OF THE ART IN DISASTER RECOVERY 26

and [Int03a].
HACMP/XD with PPRC automates the PPRC management. There is

no need to start fail-over replication tasks manually in case of a disaster. The
nodes of the HACMP cluster must have network access to the Enterprise
Storage Servers to execute preconfigured tasks when a fail-over or fail-back
is necessary.

HACMP/XD with IP based data mirroring can be configured as a syn-
chronous or an asynchronous replication solution. This makes unlimited
distance support for asynchronous configurations possible. IP based data
mirroring uses Geographic Mirror Devices (GMDs). The same software is
used in the Geographic Remote Mirror for AIX (GeoRM), which can be
used itself as a Tier 6 disaster recovery tool.

Note that HACMP is only available for the AIX operating systems.

5.4 HP-UX Disaster Tolerance Clusters

All HP-UX disaster recovery cluster products use HP MC/ServiceGuard
cluster technology, which is a high availability solution for local clusters.
Details about the HP technologies described below can be found in [Hew04],
[Hew03], [BK03] and [Fre02]. Note that although the local cluster Service-
Guard product is available for Linux, at the time of this writing the described
disaster tolerant solutions are only available for HP-UX.

5.4.1 HP Extended Distance Clusters

Extended Distance Clusters (also known as Extended Campus Clusters, for-
merly Campus Clusters) are MC/ServiceGuard clusters that are spanned
across different data centers separated by a maximum of 100 km. Each site
must have an equal number of cluster members. Data is replicated via HP’s
Mirrordisk/UX, a server-based data replication software. Arbitration can
be done by dual lock disks for clusters of up to four nodes. A split-brain will
occur in this configuration, if both the heartbeat and the disk link between
the two sites fail. In this case both sites will bring up services, compromis-
ing data integrity. Clusters with more than four nodes require a quorum
server or arbitrator nodes at a third location. Those configurations will not
compromise data integrity, even if the primary and secondary site cannot
communicate via heartbeat and disk links.

5.4.2 HP Metropolitan Cluster

Metropolitan Clusters use storage subsystem based data replication for data
mirroring. Both HP’s Continuous Access XP for XP arrays and EMC’s
SRDF for Symmetrix storage systems can be used. Arbitrator nodes or a

CHAPTER 5. STATE OF THE ART IN DISASTER RECOVERY 27

quorum server at a third location are mandatory for Metropolitan Clusters.
No kind of lock disks are supported with this cluster.

5.4.3 HP Continental Cluster

A Continental Cluster consists of two distinct MC/ServiceGuard clusters
located at different computer center sites. Each of the two clusters maintains
its own quorum. As there is no support for automated fail-over, a third
site for arbitration is not necessary. The fail-over is initiated by a human
operator.

Continental Clusters work with any data replication mechanism. Pre-
integrated solutions for HP’s Continuous Access XP and EMC’s SRDF are
available.

5.5 Sun Cluster 3.x

Automated disaster recovery for Sun Solaris can be implemented with the
Sun Cluster 3.12 software. This application-fail-over function is fully inte-
grated with the operating system. Sun Cluster supports a cluster file system,
which allows shared write access to volumes from multiple hosts. A maxi-
mum of three nodes can participate in a campus cluster configuration, but
only two nodes can be used for running applications. The third node can
only be an arbitrator node. Both two and three-site configurations are possi-
ble. Only the three-site setup guarantees system availability after a disaster
at one site. In two-site clusters a quorum device is placed within one of the
two sites. If that site fails, the other surviving node is useless as it cannot
bring up services without manual interaction. Sun itself states that “expe-
rience has shown that this technique is very error prone and requires highly
skilled personnel to implement correctly” [Str02, p. 15]. Thereby a two site
configuration does not seem to be suited for a disaster tolerant solution at
all.

Sun Cluster supports both server and storage subsystem based data repli-
cation. For storage subsystem based data replication, Hitachi’s TrueCopy
is used. In case of an outage of a complete site, many manual steps will be
necessary if storage-based data replication is used. This can even include
actions that must be taken by a Sun service provider [Sun04, p. 69].

Administration of the Sun Cluster does not seem to be easy, as Sun
often points out that well-trained, dedicated people must administer the
infrastructure, for example in [Str02, p. 4]. This can be very unfavorable as
these professionals may not be available in case of a disaster.

As Sun Cluster supports only two nodes that can run services, no high
availability can be implemented within a site. Every failure of a single

2http://www.sun.com/software/cluster

CHAPTER 5. STATE OF THE ART IN DISASTER RECOVERY 28

component leads to a site fail-over.

5.6 OpenVMS Cluster

OpenVMS3 is a shared everything cluster that uses a built-in distributed
lock manager. With a maximum of 96 nodes in a cluster, all servers can
write simultaneously to the same files of the cluster file system. The disk
volumes can be directly attached to all nodes or other nodes can serve the
volumes to the rest of the cluster.

Server-based data mirroring is supported through the Volume Shadow-
ing product, a software-based RAID 1 solution. All write operations are
synchronous. Multiple disk drives can participate in this mirroring, they
are part of a so-called “shadow set”.

A single OpenVMS cluster can be spanned across two geographically
separated data centers. The applications may run at both sites at the same
time, as all data will be mirrored symmetrically and synchronously across
the different data centers.

OpenVMS uses a quorum strategy for arbitration. Therefore every clus-
ter node gets a number of votes. In a split brain situation (in OpenVMS
called “partitioned cluster”), no group of cluster nodes would continue to
operate if both sites have the same number of votes. A group of cluster
nodes needs at least one more vote than half of the sum of all votes in the
whole cluster. It is recommended to configure three sites, where the nodes
at the third site can act as tie breakers.

3http://h71000.www7.hp.com

Chapter 6

Problem Statement

6.1 What is it all about?

Local high availability clustering solutions for Linux have been available for
quite some time. However, a fully integrated solution which is capable of
handling hardware-replicated storage devices does not exist yet.

In case of a disaster many steps must be performed manually before the
IT services can be brought up again at the recovery site. These steps can
be very error-prone if the administrator has no in-depth knowledge about
the storage subsystem, its replication mechanisms and the behavior and
internal operations of the cluster manager. Even the best trained personnel
is no guarantee for the right sequence of actions, as a disaster is always a
dramatic situation that makes it very difficult to work. Nobody can assure
that these people will be available at the recovery site, as they may not have
a chance to reach their workplace or have to deal with personal challenges
after the disaster. The most extensive solutions are not worth their effort
if they rely on experienced administrators who may not be available at the
recovery site.

To improve this situation, a higher level of automation must be achieved.
All cluster nodes of the geographical dispersed cluster need the ability to
configure the storage subsystem for fail-over and fail-back procedures. As the
data replication mechanisms of sophisticated storage subsystems are rather
complex and support various states of operations, this problem cannot be
solved easily.

There are some rules that must be fulfilled in a highly automated envi-
ronment:

1. Data consistency must not be violated under any conditions.

2. Every single cluster node must be able to execute all necessary fail-over
and fail-back operations.

3. In case of inconsistent replication states of the affected volumes, the

29

CHAPTER 6. PROBLEM STATEMENT 30

cluster manager must recognize this and stop all automated procedures
until human intervention.

6.2 Analysis of today’s Solutions

6.2.1 No Linux Support

Today there is no automation software for Linux available to handle hardware-
based data replication. The solutions presented in chapter 5 are only avail-
able for IBM’s z-Series mainframes, HP’s OpenVMS and some commercial
UNIX operation systems like IBM AIX, HP UX and Sun Solaris.

6.2.2 Source Storage Devices at one Site only

IBM’s GDPS for z-Series allows data access only at the primary site’s storage
subsystem. Although applications may also run at the secondary site, this
design can have some performance implications, as described in section 5.1.1.

6.2.3 Mandatory Quorum Devices at a third Site

HP’s geographical dispersed cluster products, HP Extended Distance Clus-
ter and HP Metropolitan Cluster, require quorum devices at a third site.
HP Continental Cluster on the other side has no support for a third site.

6.3 What is the Benefit?

The implemented prototype enables Linux cluster products to integrate stor-
age subsystem based data replication. This allows the design of disaster
resilient Linux cluster configurations.

The prototype supports both two- and three-site configurations. Two-
site configurations require the same number of nodes at each site. In case of
a site disaster or communication loss between the two sites, manual quorum
assignment is necessary. A three-site configuration does not need such man-
ual quorum assignments. Although only two sites can be used for running
services, cluster nodes at the third site also have votes for quorum. After
a complete site disaster, the remaining two sites have enough votes to get
quorum. This allows the automatic recovery of services.

Another advantage is the possibility of active-active configurations. Au-
tomation of storage replication can be individually configured for each appli-
cation. Some applications may run at the primary site, while others run at
the secondary site. This allows a better utilization of computing resources.

Chapter 7

Implementation

7.1 Implementation Overview and Requirements

Every Linux cluster manager uses some kind of resources to manage highly
available services. E.g. a highly available NFS service consists typically of a
mount-resource, an IP-address-resource and the NFS-resource (NFS server
application) itself, which are started in this order during startup of the NFS
service. The resources can be used like init-scripts with at least a start, a
stop and a status parameter.

The implemented prototype provides a storage-resource for Linux cluster
managers. This resource can be used as first resource during startup of a
service before the mount-resource mounts the file systems. If the storage-
resource can be started successfully, the data replication states allow mount-
ing of the corresponding file systems. More details about the start process
will be shown in section 7.7.1.

The implementation uses IBM’s PPRC (Peer to Peer Remote Copy) of
the ESS (Enterprise Storage Server). PPRC was chosen because it supports
the following sophisticated data replication functions:

• Quick re-synchronization after outages of the replication links.

• Fibre channel links can be used full duplex for concurrent replication
in both directions.

• Automation of replication function via command line interfaces.

The storage-resource prototype must fulfill the following requirements:

• It must preserve data consistency.

• If the current data replication states do not allow data access, all
necessary actions to reach a state which may allow data access must
be executed automatically.

31

CHAPTER 7. IMPLEMENTATION 32

• If the current states do not allow data access and there is no chance
of automatic actions reaching a better state, a detailed error log must
be provided.

7.2 Cluster Manager Requirements

There are some requirements that a high availability cluster manager for
Linux must fulfill before it can used with this implementation. At the time
of this writing, only Tivoli System Automation for Linux fulfilled these re-
quirements. Therefore it was used as example cluster manager for the test
scenario used in chapter 8. The following three requirements must be ful-
filled.

7.2.1 Support for more than two nodes

For a disaster resilient configuration it is advantageous when at least three
nodes participate in the geographically dispersed cluster. Cluster managers
with a maximum of two nodes per cluster do not allow local clustering at
a site. With one node at each of both sites the maximum node count is
reached. In case of an outage of a single node a complete site fail-over
will be necessary. Cluster managers that support more than two nodes will
be able to do a local fail-over in such a situation. This has the following
advantages:

• The mirror relationship between the two sites does not need to be
reconfigured. As a result, a local fail-over is faster than a fail-over to
the other site.

• Reconnecting clients to the other site takes more time as routing or
DNS information must be updated before clients can reconnect.

• With most storage systems, a site fail-over causes the mirror relation-
ship to be suspended. Data writes at the recovery site are not mirrored
back to the production site without human interaction.

• A site fail-over causes more automated actions than a local fail-over
does. There is a potential higher risk of failures.

7.2.2 No mandatory quorum device

To make both two- and three-site configurations possible, the cluster man-
ager must not depend on a mandatory quorum disk or quorum server. For
two-site configurations, a manual assignment of quorum must be possible.

CHAPTER 7. IMPLEMENTATION 33

7.2.3 No mandatory fencing mechanisms

Fencing mechanisms cannot be used with disaster resilient clusters. Both
resource fencing and system reset fencing need hardware to support the
fencing. If the fencing hardware is destroyed during a disaster at a single
site, nodes at the remaining site cannot fence the destroyed components.

7.3 Storage Automation via Command Line Inter-
face

Command Line Interfaces (CLIs) allow the automation of storage system
functions. Two different CLIs are available for the Enterprise Storage Server:
the Storage Management CLI and the Copy Services CLI. Both are writ-
ten in JAVA and communicate with the ESS via network connections. All
communication is encrypted. In-band communication via fibre channel con-
nections is not supported. If the ESS is not reachable via the network,
no ESS commands can be executed via the CLIs. The use of the CLIs is
described in detail in [Int03b].

7.4 Features of the Implementation

The written prototype automates nearly the complete PPRC management
via the two CLIs. Only PPRC tasks must be created manually via the ESS
Specialist Web interface. Every application can be configured individually,
as shown in section 7.6. This allows site A to act as production site for the
first application and as recovery site for the second. Site B on the other side
is the production site for the second application and recovery site for the
first. The terms “production site” and “recovery site” are used to explain the
concepts of the prototype in connection with PPRC terms. The prototype
itself does not care about production and recovery sites.

7.5 PPRC

7.5.1 PPRC Basics

PPRC Paths

PPRC uses so-called PPRC paths to replicate data to another ESS. PPRC
paths can be established between two Logical Sub-Systems (LSSes). An
ESS consists of 16 LSS, which contain RAID-protected data storage on hard
disks. Details about LSSes can be found in [Cea02, p. 68]. PPRC paths
can use multiple physical fibre channel links. This enhances the possible
throughput and eliminates single points of failure in the replication stream.

CHAPTER 7. IMPLEMENTATION 34

PPRC Connections and PPRC States

PPRC connections are configured at volume level. To establish a PPRC
connection between two volumes, a PPRC path between the correspond-
ing LSSes must exist. PPRC connections can be synchronous or non-
synchronous. Every PPRC connection needs two volumes, one acting as
PPRC source and one acting as PPRC target. If a volume is not part of a
PPRC connection, it is referred to as PPRC simplex.

A PPRC volume can have one of the following states:

• full-copy

• suspended

• copy-pending

• none

• unknown

PPRC Tasks

Every PPRC action can be executed manually via the ESS Specialist Web
Interface. To enable the execution of PPRC actions via command line in-
terfaces, PPRC actions can be stored as PPRC tasks. The following PPRC
task types are possible:

• Establish paths

• Remove paths

• Establish Synchronous PPRC copy pair

• Establish PPRC Extended Distance copy pair

• Suspend PPRC copy pair

• Terminate PPRC copy pair

Depending on the PPRC task type, different PPRC paths or PPRC copy
options are available. Details can be found in [Cea04, p. 232].

7.5.2 Establishing PPRC Paths

The implementation focuses on fibre channel links for PPRC paths. Al-
though ESCON links may also work, they have not been tested with this
implementation.

It is recommended to use at least two different physical links for PPRC.
With fibre channel, each physical link can be used in both directions. This
is not possible with ESCON.

Depending on customer needs, the PPRC consistency group option can
be activated during establishment of PPRC paths. This affects the behavior

CHAPTER 7. IMPLEMENTATION 35

in case of an outage of all PPRC paths between two Logical Sub-Systems
(see section 4.6.2).

7.5.3 Necessary PPRC Tasks

Various PPRC tasks are necessary for each highly available service. In case
a service uses more than one volume, the tasks must be configured for every
volume and then combined into a group task. Tasks can only be created via
the ESS Copy Services Web User Interface. It is not possible to automate
the creation of PPRC tasks. Mandatory PPRC tasks are described in the
paragraphs below:

PPRC Failover from Site A to Site B

During normal operations, volumes at the production site are in PPRC
source, full-copy state. Volumes at the recovery site are in PPRC target,
full-copy state. The PPRC failover task from site A to site B is necessary if
the application currently uses site A as production site and the application
must be switched to site B.

Nodes at site B cannot write to the PPRC target volumes. To allow write
access, a PPRC failover task must be executed successfully. This brings the
volumes at the recovery site (site B in this case) to PPRC source, suspended
state. Volumes at the production site remain in their state. Nodes at the
recovery site can mount the volumes in read/write mode. Updates to these
volumes are not mirrored back to the production site. They are only marked
to allow a fast resynchronization later with a PPRC failback task. More
information on creating PPRC failover tasks can be found in [Cea04, p. 413
and p. 426].

PPRC Failback after PPRC Failover from Site A to Site B

No data writes are mirrored to site A after the PPRC failover to site B. If the
current data at site B is valid, the mirroring to site A can be initiated with
a PPRC failback task. The PPRC failback task does not allow a fail-back
of the application to site A. It only ensures that volume mirroring is done
back to the former production site. To do a fail-back of the application,
another PPRC failover task from site B to site A is necessary after this
PPRC failback task.

Before a PPRC failback task is executed it is a good idea to create
point-in-time copies of the volumes at site A. If the new data at site B was
erroneous, these copies can help as last known-good data sets. Without
point-in-time copies, the PPRC failback overwrites these last known-good
data sets. Until the PPRC failback task finishes, the volumes at site A have
no data consistency at volume level. There is only one usable copy of each
volume during PPRC failback.

CHAPTER 7. IMPLEMENTATION 36

PPRC Failover from Site B to Site A

This is the same task as “PPRC failover from site A to site B”, but with
switched roles. The task is used for applications that use site B as production
site and need to be switched to site A. It is also necessary for applications
that use site A as production site, to allow an application fail-back after a
whole application fail-over (this includes a PPRC failover and PPRC failback
operation).

The execution of this task will switch volume states at site A from PPRC
target, full copy or suspended to PPRC source, suspended. Volumes states
at site B will remain the same. Again, no data mirroring takes place after
this PPRC failover task.

PPRC Failback after PPRC Failover from Site B to Site A

This task is necessary to initiate data mirroring from site A to site B after
the PPRC failover from site B to site A. Again, it is wise to make a point-
in-time copy at site B in this case.

Establish PPRC Connections

To initiate the PPRC mirroring between volumes, this task for establishing
of PPRC connections is necessary. PPRC connections can either be config-
ured from site A to site B or from site B to site A, depending where the
PPRC source volumes should be located initially. The necessary task type
is Establish Synchronous PPRC copy pair. The options Copy entire volume
and Permit read from secondary must be set. The latter option is necessary
to allow nodes at the recovery site to read partition tables at boot time.

Re-Establish PPRC Connections from Site A to Site B

After a total outage of all PPRC paths, PPRC source volumes will go to
suspended state. When the PPRC paths are available again, PPRC connec-
tions are not resumed automatically. To resume the PPRC mirroring, PPRC
connections must be re-established. Again, a task with the type Establish
Synchronous PPRC copy pair is necessary. The options Copy out-of-sync
cylinders only and Permit read from secondary are required.

This task is necessary if PPRC mirroring was done from site A to site B
as the outage of the PPRC paths occurred.

Re-Establish PPRC Connections from Site B to Site A

This task has the same functionality as the previous task, with interchanged
roles. It is necessary if PPRC mirroring was done from site B to site A as
the outage of the PPRC paths occurred.

CHAPTER 7. IMPLEMENTATION 37

Terminate PPRC Connections from Site A to Site B

Sometimes it may be possible that data updates after a PPRC failover should
be discarded and the old data set should be used again. This can happen
if wrong data is written at the recovery site. To allow re-establishment
of the PPRC connection from scratch, the old PPRC connections must be
terminated. As both sites are PPRC source volumes after a PPRC failover,
two tasks are necessary for this. This task terminates the PPRC connections
from site A to site B. The task type is Terminate PPRC copy pair, with the
option Schedule task with source logical subsystem.

Terminate PPRC Connections from Site B to Site A

This task terminates PPRC connections from site B to site A. Task type
and option are the same as with the previous task.

7.6 Service-dependent PPRC Configuration Files

Every service that uses PPRC-mirrored volumes needs its own configuration
file. The values assigned to the variables provide all necessary information
to the pprcvolume script to automate the PPRC management. The config-
uration files must be copied to every node at both sites. An example for an
NFS server is shown in figure 7.1.

siteAName, siteBName: names of the two sites. This information is used
for logging purposes.

serviceName: name of the service that uses the configured volumes. The
value is used for the name of the lock-file.

siteAhosts, siteBhosts: lists the names of all nodes in the cluster that
may mount the configured volumes. The names must be the same as re-
turned by the hostname command at the individual nodes. Host names are
separated by spaces. The variables are necessary to enable the pprcvolume
script to determine whether it is executed at site A or site B.

ipCSSA, ipCSSB: IP addresses or resolvable hostnames of Copy Services
Server A and B. It is better to use IP addresses as they will also work if
name resolution is impossible. If hostnames are used, it is wise to insert
them with their corresponding IP addresses to /etc/hosts at each node.

accessESSCLI, accessCSSCLI: location of the access files for the ESSCLI
(Enterprise Storage Server Command Line Interface) and the CSSCLI (Copy
Services Server Command Line Interface).

CHAPTER 7. IMPLEMENTATION 38

Configuration file for automated PPRC management

(c) 2004 Werner Fischer, fischerw(at)at.ibm.com

License: GPL

siteAName="Mainz"

siteBName="Frankfurt"

serviceName="nfsserver"

siteAhosts="minnie mickey"

siteBhosts="moe dell"

ipCSSA="9.155.51.231"

ipCSSB="9.155.51.233"

accessESSCLI="/opt/ibm/ibm2105cli/securityFileESSCLI.cfg"

accessCSSCLI="/opt/ibm/ibm2105cli/securityFileCSSCLI.cfg"

siteAtoBfailover="EFO_GRP_B_A"

siteAtoBfailback="EFB_GRP_B_A"

siteBtoAfailover="EFO_GRP_A_B"

siteBtoAfailback="EFB_GRP_A_B"

establishPPRCConnections="ESP_GRP_A_B"

siteAtoBreEstablishPPRCConnections="RESP_GRP_A_B"

siteBtoAreEstablishPPRCConnections="RESP_GRP_A_B"

siteAterminatePPRCConnections="TSP_GRP_A_B_S"

siteBterminatePPRCConnections="TSP_GRP_B_A_S"

siteAVolumes="40028296 40128296 40228296"

siteBVolumes="40028244 40128244 40228244"

#noSyncBlockAppStart="yes"

#allowSimplexStart="yes"

Figure 7.1: Example configuration file nfsserver.conf.

siteAtoBfailover: name of the task that executes a PPRC failover from
site A to site B for all volumes of the configured service. If more than one
volume is used, this name must refer to a group task.

siteAtoBfailback: name of the task that executes a PPRC failback after
a PPRC failover from site A to site B. After this task is executed, the
volumes at site B will be PPRC sources and the volumes at site A PPRC
targets.

siteBtoAfailover: name of the task that executes a PPRC failover from
site B to site A.

siteBtoAfailback: name of the task that executes a PPRC failback after
a PPRC failover from site B to site A.

establishPPRCConnections: name of the task that establishes the initial
PPRC connections. The volumes must be in PPRC simplex state to allow
the first establishment of the PPRC connection.

CHAPTER 7. IMPLEMENTATION 39

siteAtoBreEstablishPPRCConnections: name of the task to re-establish
PPRC Connections from site A to site B.

siteBtoAreEstablishPPRCConnections: name of the task to re-establish
PPRC Connections from site B to site A.

siteAterminatePPRCConnections: name of the task that terminates PPRC
connections with the option “schedule task with source logical subsystem”
at site A.

siteBterminatePPRCConnections: name of the task that terminates PPRC
connections with the option “schedule task with source logical subsystem”
at site B.

siteAvolumes, siteBvolumes: volume IDs at site A and site B that will
be used by the service. A volume ID contains a three digit volume number
and a 5 digit ESS serial number. siteAvolumes and siteBvolumes must
be configured in the same order, so that the first volume in siteAvolumes
will be mirrored with the first volume in siteBvolumes and so on. Volume
IDs are separated by spaces.

noSyncBlockAppStart: option to block the start of applications if both
sites are not synchronous. This option is reasonable if PPRC consistency
groups are used. It has no impact on PPRC failover operations. If not
defined, noSyncBlockAppStart is set to no.

allowSimplexStart: allows the start of applications even if the volumes
are in PPRC simplex state. This can be useful after a disaster that destroyed
an ESS. In that case, the old PPRC connections should be terminated before
new PPRC connections to a new ESS are established. To allow local fail-
over even in those situations, allowSimplexStart must be configured to
yes. This option should only be used temporarily. If not defined, it is set
to no.

7.7 The pprcvolume Script

7.7.1 start Operation

The start operation is the core of the prototype. It contains the most com-
plex functions of the prototype and ensures correct data replication states.
To enable the start of applications, PPRC states must allow read/write ac-
cess to the volumes. The start operation queries all volume states and
determines if this is possible. In certain situations, it takes actions to bring

CHAPTER 7. IMPLEMENTATION 40

Figure 7.2: Flowchart of the start operation.

CHAPTER 7. IMPLEMENTATION 41

the volumes to a state that allows read/write access. If this is impossible,
errors are logged and the script exits with a return code other than 0. Figure
7.2 shows the flowchart of the start operation. The start operation is used
by the cluster manager during the startup of applications. A return code of
0 must be mandatory for the cluster manager to mount the volumes.

Are all local volumes PPRC targets?

At first, the pprcvolume script checks whether all local volumes are PPRC
targets. PPRC target volumes can be used read-only to read the partition
table during booting of a node. If the local volumes are PPRC targets in
full copy or suspended state (state ST1 in the flowchart), a PPRC failover
operation must be executed. After a successful PPRC failover, former PPRC
target volumes will become PPRC source volumes in suspended state. This
allows write access to the volumes. The states of the peer volumes in the
PPRC pairs remain the same.

If not all PPRC target volumes are either full copy or suspended, no
PPRC failover operation is executed and applications may not start (state
ST2).

Are all local volumes PPRC sources?

If all local volumes are in PPRC source state, further investigations about
the state of the PPRC peer volumes are necessary. First of all, it must
be checked if the PPRC peer volume states can be queried at all. This is
not possible if an ESS or its network connection fails. Depending on the
noSyncBlockAppStart option, applications are prohibited to start (states
ST6 and ST7).

Are all PPRC peer volumes targets? If the peer volumes are PPRC
targets and in full copy state, applications are allowed to start (state ST8).
This happens for example in a local fail-over situation or at the initial start
of the application.

In case that the peer volumes are PPRC targets, but not all volumes
are in full copy state, applications are prohibited to start depending on the
noSyncBlockAppStart option (states ST9 and ST10). This can happen if
all PPRC paths are down.

Are all PPRC peer volumes sources? If both the local and the peer
volumes are PPRC sources, a PPRC failover operation may have happened
before. This situation can arise when a fail-over within the recovery site is
necessary after a disaster at the primary site. It is also possible that appli-
cations should be started at the production site (after the application ran at
the recovery site), but no PPRC failback operation was executed before. In

CHAPTER 7. IMPLEMENTATION 42

the first case, the local PPRC source volumes should be in suspended state,
remote PPRC source volumes in full copy state. If this is true, applications
are allowed to start (state ST12), in other cases not (ST13).

If the PPRC peer volumes have different PPRC states, applications are
not allowed to start (ST11).

Are all local volumes PPRC simplex?

Depending on the allowSimplexStart option, applications may start (ST4)
or not (ST5).

If the local volumes have different PPRC states, applications may not
start (state ST3).

7.7.2 stop Operation

This operation removes the lock-file that indicates the online state of the
pprcvolume resource. The stop operation is used by the cluster manager
if an application is switched to another node, or the application should
generally be stopped.

7.7.3 PPRCfailback Operation

A PPRC failover operation is necessary during a failover of the application
to the other site. This leaves the volumes at the former production site in
their current PPRC states. The volumes at the recovery site will become
PPRC sources in suspended state. Depending on the reason for the site
fail-over, the ESS at the production site may become available again.

The PPRC failback operation ensures a minimum re-synchronization
time if new data tracks should be mirrored back to the original production
site. This decision, if the new data should be mirrored back must be made
by the administrator. As a consequence, this operation is for administrator’s
use only and must not be automatically executed by the cluster manager.
Depending on the volume states at the original production site, the PPRC
failback operation executes different actions.

Volumes at the Production Site are PPRC Simplex: this will hap-
pen if the ESS at the production site is replaced after a disaster.

By executing the PPRC failback, all data will be copied from the recovery
to the production site.

Volumes at the Production Site are PPRC Sources in full-copy or
suspended State without changed Data Tracks: this situation arises
if the ESS at the production site is not destroyed.

Only out-of-sync data will be copied back to the production site. This
shortens the re-synchronization time.

CHAPTER 7. IMPLEMENTATION 43

Volumes at the Production Site are PPRC Sources in full-copy or
suspended State with changed Data Tracks: this situation should
never occur, as nodes at both sites must have written to the data. This can
only happen in a split brain situation, if operators grant operational quorum
to both sites. This harms data consistency at application level. The data
consistency at a single volume level is still preserved, But there is no chance
to merge the new data of both sites.

The ESS at the recovery site (which executed the PPRC failover) will
discover which data tracks have been modified at each site. All these modi-
fied data tracks will be copied back from the recovery to the production ESS.
This also guarantees that changed data tracks at the former primary site
will be overwritten, which is necessary to keep data consistency at volume
level. All new data written to the primary site is lost.

7.7.4 status Operation

Determines the online state of the pprcvolume resource. If the lock-file
exists, the resource is treated as online. Cluster managers can use the status
operation to monitor the state of the pprcvolume resource.

7.7.5 statusReport Operation

Gives an detailed overview about the current volume states. This operation
is not used by the cluster manager. It is useful for the operator to check
volume states without the ESS Copy Services Web User Interface. The
output of the operation is written to the log to ensure traceability. An
example output is shown in figure 7.3.

7.7.6 establishPPRC Operation

Establishes the PPRC connections between the two sites. This operation
can be used for the initial synchronization or after a replacement of an ESS.
It may only be executed by the administrator, never by a cluster manager.
It copies the entire volumes to the other site.

7.7.7 reEstablishPPRC Operation

Similar to establishPPRC, reEstablishPPRC switches to synchronous repli-
cation between the two sites. But this operation copies only out-of-sync
tracks to the other site. This shortens the re-synchronization time. The op-
eration may only be used after an outage of all PPRC paths, which causes
the source volumes to go to suspended state. It may only be executed by
the administrator.

CHAPTER 7. IMPLEMENTATION 44

May 4 08:07:37 pprcvolume[3031]: - performing statusReport operation -

May 4 08:07:37 pprcvolume[3032]: This host is at Mainz (site A)

May 4 08:07:39 pprcvolume[3126]: Local volume: 40028296,source,synchronous,fullcopy

May 4 08:07:41 pprcvolume[3220]: Peer volume: 40028244,target,synchronous,fullcopy

May 4 08:07:43 pprcvolume[3314]: Local volume: 40128296,source,synchronous,fullcopy

May 4 08:07:45 pprcvolume[3408]: Peer volume: 40128244,target,synchronous,fullcopy

May 4 08:07:47 pprcvolume[3502]: Local volume: 40228296,source,synchronous,fullcopy

May 4 08:07:49 pprcvolume[3596]: Peer volume: 40228244,target,synchronous,fullcopy

May 4 08:07:49 pprcvolume[3597]: volumes=3

May 4 08:07:49 pprcvolume[3598]: lSource=3

May 4 08:07:49 pprcvolume[3599]: lTarget=0

May 4 08:07:49 pprcvolume[3600]: lStatusCopy_pending=0

May 4 08:07:49 pprcvolume[3601]: lStatusSuspended=0

May 4 08:07:49 pprcvolume[3602]: lStatusFullcopy=3

May 4 08:07:49 pprcvolume[3603]: rSource=0

May 4 08:07:49 pprcvolume[3604]: rTarget=3

May 4 08:07:49 pprcvolume[3605]: rStatusCopy_pending=0

May 4 08:07:49 pprcvolume[3606]: rStatusSuspended=0

May 4 08:07:49 pprcvolume[3607]: rStatusFullcopy=3

May 4 08:07:49 pprcvolume[3608]: - statusReport operation finished -

Figure 7.3: Log output of statusReport operation

7.7.8 terminatePPRC Operation

In some cases it may be necessary to terminate the PPRC connections. This
may be useful if an ESS must be replaced. This operation may only be used
by the administrator.

7.7.9 skipPPRCfailback Operation

This operation has the same function as terminatePPRC (skipPPRCfailback
is only used as a synonym). This synonym name for the same operation is
chosen to highlight the second case, where this function is necessary. After
a PPRC failover, changes to the data are not mirrored to the former pro-
duction site. If the new data written to the recovery site is not valid, the
data set of the former production site can be used again as a base to start
from again (if the ESS at the former production site is not destroyed). To
skip a PPRC failback, the PPRC connections must be terminated with this
function. As terminatePPRC, skipPPRCfailback is only for administrator’s
use.

7.8 Logging Configuration

The pprcvolume script uses the three log security levels alert, info and
debug. The log facility for the script is local3. When necessary, the log
facility can be changed in the script. It is recommended to write alerts

CHAPTER 7. IMPLEMENTATION 45

local3.alert -/var/log/pprcvolume.alert

local3.info -/var/log/pprcvolume.info

local3.debug -/var/log/pprcvolume.debug

Figure 7.4: Extract of the syslogd configuration file /etc/syslogd.conf.

to /var/log/messages. Logging information of the other two supported
security levels should be written to different log files. Figure 7.4 shows an
example configuration for the syslog daemon.

Chapter 8

Tests

8.1 Test Environment

The test-setup is shown in figure 8.1. The zoning configuration of the Inrange
FC/9000 director simulated four SAN-switches (two SAN-switches would be
located in each site).

The two sites were configured in an active/active setup in the test sce-
nario. NFS and MySQL were used as example services. A test software

Figure 8.1: Test setup of the geographically dispersed cluster.

46

CHAPTER 8. TESTS 47

running on a sample client continuously wrote data to the NFS share. The
sample client was connected to the LAN of site B. PPRC paths were es-
tablished without consistency group option. Hence in case of an outage of
all PPRC paths data writes to the PPRC source volume were allowed, al-
though mirroring of the writes was impossible. As the test setup used a
two-site configuration, manual action was sometimes necessary to execute a
site fail-over.

As the tests had to be done in a isolated testing network, no connections
to time servers were possible. All nodes started with synchronous time,
running a local ntp daemon. Driftfiles of all nodes were calculated during
one week running in a official network with access to time servers.

8.1.1 Tivoli System Automation Configuration

TSA was configured through a number of shell scripts and definition files.
The configuration files for the test scenario can be found on the CD-ROM.

8.1.2 pprcvolume Configuration

The pprcvolume configuration files for the NFS and the MySQL server can
be found in appendix A.

8.2 Initial Setup and Synchronization

At the beginning, all necessary PPRC tasks had to be configured and the
synchronous PPRC connections manually established. This was done via
the ESS Specialist Web interface.

8.3 Site A down

Expected behavior: in case of a complete outage of a site the remaining
site brings up services. In a two-site configuration cluster nodes cannot
distinguish between a split brain and a disaster situation. Therefore manual
intervention is necessary.

Test result: Nodes at the remaining site wrote warnings to their system
log files (/var/log/messages) that indicated the PENDING QUORUM state:

Apr 29 15:50:21 moe ConfigRM[2546]: (Recorded using libct_ffdc.a cv2):::Error ID: ::

:Reference ID: :::Template ID: 0:::Details File: :::Location: RSCT,PeerDomain.C,1.

99.5.2,12652 :::CONFIGRM_PENDINGQUORUM_ER The operational quorum state

of the active peer domain has changed to PENDING_QUORUM. This state usually indicat

es that exactly half of the nodes that are defined in the peer domain are online.

In this state cluster resources cannot be recovered although none will be stopped e

xplicitly.

Apr 29 15:50:21 moe RecoveryRM[2660]: (Recorded using libct_ffdc.a cv 2):::Error ID:

CHAPTER 8. TESTS 48

825....RUEY./wK0/7gtAo....................:::Reference ID: :::Template ID: 0:::Det

ails File: :::Location: RSCT,Protocol.C,1.13,1600 :::RECOVERYRM

_INFO_4_ST A member has left. Node number = 1

Apr 29 15:50:21 moe RecoveryRM[2660]: (Recorded using libct_ffdc.a cv 2):::Error ID:

825....RUEY./1P0/7gtAo....................:::Reference ID: :::Template ID: 0:::Det

ails File: :::Location: RSCT,Protocol.C,1.13,1600 :::RECOVERYRM

_INFO_4_ST A member has left. Node number = 2

Granting of operational quorum was necessary to bring up services that
had been running at site A. This was done with the following command,
executed at the node moe (the command may have been executed at any
node at the remaining site B):

moe# runact -c IBM.PeerDomain ResolveOpQuorumTie Ownership=1

Nodes at site B got the quorum back:

Apr 29 15:55:09 moe ConfigRM[2546]: (Recorded using libct_ffdc.a cv2):::Error ID: ::

:Reference ID: :::Template ID: 0:::Details File: :::Location: RSCT,PeerDomain.C,1.

99.5.2,12648 :::CONFIGRM_HASQUORUM_ST The operational quorum state of t

he active peer domain has changed to HAS_QUORUM. In this state, cluster resources m

ay be recovered and controlled as needed by management applications.

After operational quorum was granted, the NFS service was started:

Apr 29 15:55:11 dell pprcvolume[26041]: - performing start operation -

Apr 29 15:55:11 dell pprcvolume[26045]: This host is at Linz (site B)

...

Apr 29 15:56:44 dell /etc/safl/nfsserver/nfsserver:[28397]: NFS server started

If runact command was executed with Ownership=0, operational quo-
rum would have been denied.

8.4 ESS A down

Expected behavior: an outage of a single ESS must lead to a site fail-
over. It is noticed by the cluster manager’s file system monitoring script. As
applications first try to fail-over to another node at the same site, the site
fail-over to the other site will be executed after all local nodes have tried to
bring up the application.

Test result: Nodes that were using ESS A received SCSI errors after ESS
A went down:
Apr 29 21:35:47 minnie kernel: SCSI disk error : host 1 channel 0 id 0 lun 0 return

code = 8000002

Apr 29 21:35:47 minnie kernel: Current sd08:11: sense key Hardware Error

Apr 29 21:35:47 minnie kernel: Additional sense indicates Internal target failure

Apr 29 21:35:47 minnie kernel: I/O error: dev 08:11, sector 50512

Apr 29 21:35:47 minnie kernel: scsi(2): Waiting for LIP to complete.

Apr 29 21:35:47 minnie kernel: scsi(2): Topology - (F_Port), Host Loop address 0xfff

f

Apr 29 21:35:48 minnie kernel: qla2x00_find_all_fabric_devs GNN_FT Failed-Try issuin

g GAN

...

CHAPTER 8. TESTS 49

As soon as all paths of a vpath device were recognized as OFFLINE, the
monitoring for this resource reported this to TSA. The NFS service was
stopped. The other node at the same site (mickey) tried to bring up the nfs
service twice. This failed as the ESS was not reachable. The pprcvolume
script logged the reason for this.

Apr 29 21:36:56 mickey pprcvolume[14321]: Alert: state (ST3), apps may NOT start, ex

iting with RC 1

Finally, node dell at site B started the nfs service.

Apr 29 21:55:34 dell pprcvolume[21469]: - performing start operation -

Apr 29 21:55:34 dell pprcvolume[21471]: This host is at Linz (site B)

Apr 29 21:55:44 dell pprcvolume[21733]: Local volume: 40028244,target,synchronous,fu

llcopy

Apr 29 21:55:53 dell pprcvolume[21986]: Peer volume: 40028296,,,

...

Apr 29 21:56:30 dell pprcvolume[22995]: Alert: state (ST1), executing PPRC failover

Task (EFO_GRP_B_A)

Apr 29 21:56:47 dell pprcvolume[23356]: PPRC Failover Task (EFO_GRP_B_A) exited with

signal 0 and returned: rsExecuteTask: Command successful

Apr 29 21:56:47 dell pprcvolume[23357]: Info: Apps may start, exiting with RC 0

Apr 29 21:56:47 dell pprcvolume[23359]: - start operation finished -

8.5 One Node at Site A down

Expected behavior: another node at the same site automatically starts
the applications that have been running on the failed node.

Test result: The node minnie (running the nfs server) failed (was powered
off). The other node at site A (mickey) started the nfs server.

Apr 29 16:34:46 mickey RecoveryRM[12836]: (Recorded using libct_ffdc.a cv 2):::Error

ID: 825....48FY./sRD07gtAu....................:::Reference ID: :::Template ID: 0::

:Details File: :::Location: RSCT,Protocol.C,1.13,1600 :::RECOVE

RYRM_INFO_4_ST A member has left. Node number = 1

Apr 29 16:34:53 mickey hatsd[12558]: hadms: Loading watchdog using command: insmod s

oftdog soft_margin=8 nowayout=0.

Apr 29 16:34:53 mickey kernel: Software Watchdog Timer: 0.05, timer margin: 8 sec

Apr 29 16:34:53 mickey pprcvolume[26649]: - performing start operation -

...

Apr 29 16:35:07 mickey pprcvolume[27420]: Info: state (ST8), all volumes full_copy,

apps may start, exiting with RC 0

Apr 29 16:35:07 mickey pprcvolume[27421]: - start operation finished -

...

Apr 29 16:35:25 mickey /etc/safl/nfsserver/nfsserver:[27846]: NFS server started

After the defective node was powered on again, the nfs service continued
to run on mickey.

CHAPTER 8. TESTS 50

8.6 Network Connection between Site A and Site
B down

Expected behavior: all running applications continue to run on their
current nodes. The outage of the network connection between the two sites
results in two sub-clusters. Each of them will go to PENDING QUORUM state.
If a site fail-over is necessary (e.g. from site A to site B), quorum must
be denied for site A before the site B gets operational quorum. Nodes at
site A that are running services will be forced to reboot immediately after
quorum is denied through the runact command. After granting operational
quorum at site B, nodes at site B will bring up services that have been
running on site A. When the network connection is up again, a PPRC fail-
back can be executed to mirror the new data back to site A. During this
re-synchronization, the data at site A is not consistent.

Test result: All nodes were still up and running. The cluster split up
into two sub-clusters. The output of the lsrpnode command showed the
operational state of the nodes in the sub-clusters (the output depended on
the node where the command was executed):

mickey:~ # lsrpnode

Name OpState RSCTVersion

mickey Online 2.3.2.2

dell Offline 2.3.2.2

minnie Online 2.3.2.2

moe Offline 2.3.2.2

mickey:~ #

moe:~ # lsrpnode

Name OpState RSCTVersion

mickey Offline 2.3.2.2

dell Online 2.3.2.2

minnie Offline 2.3.2.2

moe Online 2.3.2.2

moe:~ #

As the test client could not reach nodes at site A after the network
outage, a site fail-over from site A to site B was necessary. This was done
by denying operational quorum at site A and granting operational quorum
at site B.

minnie# runact -c IBM.PeerDomain ResolveOpQuorumTie Ownership=0

moe# runact -c IBM.PeerDomain ResolveOpQuorumTie Ownership=1

After the runact command was executed on minnie, this node rebooted
immediately. The other node at site A (mickey) logged information about
the loss of quorum:

Apr 29 13:01:23 mickey ConfigRM[20140]: (Recorded using libct_ffdc.a cv 2):::Error I

D: :::Reference ID: :::Template ID: 0:::Details File: :::Location: RSCT,PeerDomain

CHAPTER 8. TESTS 51

.C,1.99.5.2,12656 :::CONFIGRM_NOQUORUM_ER The operational quorum state

of the active peer domain has changed to NO_QUORUM. This indicates that recovery of

cluster resources can no longer occur and that the node may be rebooted or halted

in order to ensure that critical resources are released so that they can be recover

ed by another sub-domain that may have operational quorum.

After the sub-cluster at site B got operational quorum, a node at site B
started the NFS server.

Apr 29 13:03:40 dell ConfigRM[20097]: (Recorded using libct_ffdc.a cv 2):::Error ID:

:::Reference ID: :::Template ID: 0:::Details File: :::Location: RSCT,PeerDomain.C

,1.99.5.2,12648 :::CONFIGRM_HASQUORUM_ST The operational quorum state o

f the active peer domain has changed to HAS_QUORUM. In this state, cluster resource

s may be recovered and controlled as needed by management applications.

Apr 29 13:03:41 dell hatsd[20024]: hadms: Loading watchdog using command: insmod sof

tdog soft_margin=8 nowayout=0.

Apr 29 13:03:41 dell kernel: Software Watchdog Timer: 0.05, timer margin: 8 sec

Apr 29 13:03:41 dell pprcvolume[21742]: - performing start operation -

Apr 29 13:03:41 dell pprcvolume[21743]: This host is at Linz (site B)

...

Apr 29 13:04:37 dell pprcvolume[23256]: Alert: state (ST1), executing PPRC failover

Task (EFO_GRP_B_A)

Apr 29 13:04:55 dell pprcvolume[23610]: PPRC Failover Task (EFO_GRP_B_A) exited with

signal 0 and returned: rsExecuteTask: Command successful

Apr 29 13:04:55 dell pprcvolume[23611]: Info: Apps may start, exiting with RC 0

Apr 29 13:04:55 dell pprcvolume[23613]: - start operation finished -

...

Apr 29 13:05:15 dell /etc/safl/nfsserver/nfsserver:[24101]: NFS server started

As the new data at site B was valid, a PPRC failback was executed.

Apr 29 13:19:32 moe pprcvolume[8692]: - performing failback operation -

Apr 29 13:19:32 moe pprcvolume[8694]: This host is at Linz (site B)

...

Apr 29 13:20:40 moe pprcvolume[10668]: PPRC Failback Task (EFB_GRP_B_A) exited with

signal 0 and returned: rsExecuteTask: Command successful

8.7 PPRC between ESS A and ESS B down

Expected behavior: as consistency groups are not activated, services
continue to run on their current nodes. If data is written to the PPRC
source volumes, the state of this PPRC sources changes from full-copy to
suspended. PPRC target volumes will remain in full-copy state, even if new
data is written to the associated PPRC source volumes.

Test result: After all PPRC paths failed, nodes that wrote to volumes
got SCSI errors:

Apr 29 14:58:27 minnie kernel: SCSI disk error : host 2 channel 0 id 0 lun 2 return

code = 8000002

Apr 29 14:58:27 minnie kernel: Current sd08:81: sense key Hardware Error

Apr 29 14:58:27 minnie kernel: Additional sense indicates Internal target failure

Apr 29 14:58:27 minnie kernel: I/O error: dev 08:81, sector 1649600

...

CHAPTER 8. TESTS 52

The PPRC state of the PPRC source volumes changed after they re-
ceived write commands. To document this, a pprcvolume statusReport
operation was executed manually:

Apr 29 15:26:18 minnie pprcvolume[29578]: - performing statusReport operation -

Apr 29 15:26:18 minnie pprcvolume[29584]: This host is at Mainz (site A)

Apr 29 15:26:20 minnie pprcvolume[29690]: Local volume: 40028296,source,synchronous,

suspended

Apr 29 15:26:22 minnie pprcvolume[29802]: Peer volume: 40028244,target,synchronous,

fullcopy

Apr 29 15:26:24 minnie pprcvolume[29952]: Local volume: 40128296,source,synchronous,

suspended

Apr 29 15:26:26 minnie pprcvolume[30056]: Peer volume: 40128244,target,synchronous,

fullcopy

Apr 29 15:26:28 minnie pprcvolume[30206]: Local volume: 40228296,source,synchronous,

suspended

Apr 29 15:26:30 minnie pprcvolume[30300]: Peer volume: 40228244,target,synchronous,

fullcopy

...

Apr 29 15:26:30 minnie pprcvolume[30312]: - statusReport operation finished -

8.8 Split Brain between Site A and Site B

Expected behavior: Services continue to run at both sites. If additional
cluster resources fail, they will not be recovered as no site has quorum.

Test result: All nodes wrote warnings to /var/log/messages that the op-
erational quorum state changes from HAS QUORUM to PENDING QUORUM (com-
pare section 8.3).

8.9 Network at Site A down

Expected behavior: Active nodes at site A that are running services
reboot immediately. Services at site A will be down. Manual action is
necessary to bring up these services at site B.

Test result: The node minnie rebooted immediately as it had been run-
ning the NFS service. The other node at site A, mickey, continued to run
but logged information about the loss of quorum to /var/log/messages.
After executing of the runact command with the parameter Ownership=1
at moe (any node at site B would have been possible), the node dell brought
up the NFS service.

Apr 29 17:00:34 dell ConfigRM[1984]: (Recorded using libct_ffdc.a cv 2):::Error ID:

:::Reference ID: :::Template ID: 0:::Details File: :::Location: RSCT,PeerDomain.C,

1.99.5.2,12648 :::CONFIGRM_HASQUORUM_ST The operational quorum state of

the active peer domain has changed to HAS_QUORUM. In this state, cluster resources

may be recovered and controlled as needed by management applications.

Apr 29 17:00:34 dell pprcvolume[19094]: - performing start operation -

Apr 29 17:00:34 dell pprcvolume[19095]: This host is at Linz (site B)

CHAPTER 8. TESTS 53

...

Apr 29 17:02:08 dell /etc/safl/nfsserver/nfsserver:[21430]: NFS server started

8.10 Network completely down

Expected behavior: Nobody can use any services as the network is com-
pletely down. The cluster will split up into four sub-clusters (each node will
build a sub-cluster). Nodes that have been running services reboot imme-
diately. Other nodes continue to run and indicate the loss of quorum. All
services will be stopped. Data consistency is still preserved.

Test result: The nodes mickey and moe rebooted, as they had been run-
ning services. The two other nodes remained up and indicated the loss of
quorum. All services went down.

8.11 Rolling Disaster Situation 1

In the simulated example, the rolling disaster leads to outages in the follow-
ing order:

1. LAN connection of the ESS at site A fails.

2. LAN connection of node minnie fails two minutes later.

3. All other components at site A fail 10 minutes later.

Expected behavior: The outage of the LAN connection of ESS A causes
no problems as long as no local fail-over is necessary. Immediately after the
LAN connection of minnie fails, it reboots itself to protect shared resources.
The other node at site A, mickey, tries to bring up the NFS service. As
the PPRC state of the volumes of ESS A cannot be queried, the startup of
the NFS service at mickey fails. After that, another node at site B brings
up the NFS service. When mickey also fails as all remaining components at
site A fail, the quorum state changes to PENDING QUORUM.

Test result: minnie rebooted after its LAN connection failed. The other
node at site A (mickey) tried to bring up the NFS service:

Apr 30 07:00:02 mickey RecoveryRM[22956]: (Recorded using libct_ffdc.a cv 2):::Error

ID: 825....GpRY./otC.7gtAu....................:::Reference ID: :::Template ID: 0::

:Details File: :::Location: RSCT,Protocol.C,1.13,1600 :::RECOVE

RYRM_INFO_4_ST A member has left. Node number = 1

Apr 30 07:00:02 mickey RecoveryRM[22956]: (Recorded using libct_ffdc.a cv 2):::Error

ID: 825....GpRY./cxC.7gtAu....................:::Reference ID: :::Template ID: 0::

:Details File: :::Location: RSCT,Protocol.C,1.13,1635 :::RECOVE

RYRM_INFO_6_ST Master has left, a new master has taken over. Node number of the new

master = 4

Apr 30 07:00:04 mickey hatsd[19047]: hadms: Loading watchdog using command: insmod s

oftdog soft_margin=8 nowayout=0.

CHAPTER 8. TESTS 54

Apr 30 07:00:04 mickey kernel: Software Watchdog Timer: 0.05, timer margin: 8 sec

Apr 30 07:00:04 mickey pprcvolume[31441]: - performing start operation -

Apr 30 07:00:04 mickey pprcvolume[31442]: This host is at Mainz (site A)

Apr 30 07:00:12 mickey pprcvolume[31682]: Local volume: 40028296,,,

Apr 30 07:00:12 mickey pprcvolume[31705]: Peer volume: ,,,

Apr 30 07:00:20 mickey pprcvolume[31921]: Local volume: 40128296,,,

Apr 30 07:00:20 mickey pprcvolume[31944]: Peer volume: ,,,

Apr 30 07:00:28 mickey pprcvolume[32192]: Local volume: 40228296,,,

Apr 30 07:00:28 mickey pprcvolume[32215]: Peer volume: ,,,

...

Apr 30 07:00:28 mickey pprcvolume[32227]: Alert: state (ST3), apps may NOT start, ex

iting with RC 1

Apr 30 07:00:28 mickey pprcvolume[32228]: - start operation finished -

As mickey could not start the NFS service, but was still part of the
cluster, another node at site B brought up the NFS service without manual
intervention.

Apr 30 07:10:48 dell pprcvolume[6752]: - performing start operation -

Apr 30 07:10:48 dell pprcvolume[6757]: This host is at Linz (site B)

...

Apr 30 07:11:43 dell pprcvolume[8255]: Alert: state (ST1), executing PPRC failover

Task (EFO_GRP_B_A)

Apr 30 07:12:01 dell pprcvolume[8646]: PPRC Failover Task (EFO_GRP_B_A) exited with

signal 0 and returned: rsExecuteTask: Command successful

Apr 30 07:12:01 dell pprcvolume[8647]: Info: Apps may start, exiting with RC 0

Apr 30 07:12:01 dell pprcvolume[8649]: - start operation finished -

...

Apr 30 07:12:22 dell /etc/safl/nfsserver/nfsserver:[9132]: NFS server started

8.12 Rolling Disaster Situation 2

In this simulated example, the rolling disaster leads to outages in the fol-
lowing order:

1. LAN connection of the ESS at site A fails.

2. All PPRC links fail one minute later.

3. Node minnie fails two minutes later (loses all its power links).

Expected behavior: The outage of the LAN connection of ESS A causes
no problems as long as no local fail-over is necessary. The outage of the
PPRC links also does not disrupt the running services. After minnie fails,
the other node at site A (mickey tries to bring up the NFS service. This
will fail, as the state of ESS A volumes cannot be queried. Finally, the NFS
service will be started at dell, causing a PPRC Failover from site A to site
B.

Test result: After minnie failed, mickey was able to bring up the NFS
service. This was not the expected behavior. The pprcvolume script got
wrong state information about volume states of ESS A:

CHAPTER 8. TESTS 55

Apr 30 08:03:13 mickey pprcvolume[17081]: - performing start operation -

Apr 30 08:03:13 mickey pprcvolume[17082]: This host is at Mainz (site A)

Apr 30 08:03:22 mickey pprcvolume[17284]: Local volume: 40028296,source,synchronous,

fullcopy

Apr 30 08:03:30 mickey pprcvolume[17538]: Peer volume: 40028244,target,synchronous,

fullcopy

Apr 30 08:03:38 mickey pprcvolume[17794]: Local volume: 40128296,source,synchronous,

fullcopy

Apr 30 08:03:47 mickey pprcvolume[18009]: Peer volume: 40128244,target,synchronous,

fullcopy

Apr 30 08:03:55 mickey pprcvolume[18269]: Local volume: 40228296,source,synchronous,

fullcopy

Apr 30 08:04:03 mickey pprcvolume[18529]: Peer volume: 40228244,target,synchronous,

fullcopy

...

Apr 30 08:04:03 mickey pprcvolume[18546]: Info: state (ST8), all volumes full_copy,

apps may start, exiting with RC 0

Apr 30 08:04:03 mickey pprcvolume[18547]: - start operation finished -

...

Apr 30 08:04:20 mickey /etc/safl/nfsserver/nfsserver:[18967]: NFS server started

The script got information about all volume states from ESS B. Unfortu-
nately, ESS B cached the volume states from ESS A. As the LAN connection
of ESS A broke first, followed by an outage of the PPRC links, ESS A could
not send updated volume states to ESS B. A manually initiated pprcvolume
statusReport operation showed the correct state information two minutes
later:

Apr 30 08:05:02 mickey pprcvolume[19505]: - performing statusReport operation -

Apr 30 08:05:02 mickey pprcvolume[19506]: This host is at Mainz (site A)

Apr 30 08:05:10 mickey pprcvolume[19763]: Local volume: 40028296,,,

Apr 30 08:05:10 mickey pprcvolume[19786]: Peer volume: ,,,

Apr 30 08:05:18 mickey pprcvolume[20004]: Local volume: 40128296,,,

Apr 30 08:05:18 mickey pprcvolume[20027]: Peer volume: ,,,

Apr 30 08:05:26 mickey pprcvolume[20269]: Local volume: 40228296,,,

Apr 30 08:05:26 mickey pprcvolume[20292]: Peer volume: ,,,

...

Apr 30 08:05:26 mickey pprcvolume[20304]: - statusReport operation finished -

There was no information about PPRC peer volumes, because the lo-
cal PPRC states could not been queried (and the information about the
corresponding PPRC peer volumes comes from this query).

To prevent such situations, it is necessary to set a timeout value be-
fore volume states are queried during a pprcvolume start operation. The
timeout value depends on the maximum possible time an ESS caches volume
state information.

Also without a timeout value, data consistency will never be violated.
In the worst case, services will be started on another node.

Chapter 9

Conclusions

9.1 Conclusions

1. A prototype for the automation of storage subsystem functions for
data replication has been developed. The implementation is shown
with Tivoli System Automation for Linux as an example of a cluster
manager. The prototype itself works with any Linux cluster manager
that fulfills the requirements mentioned in section 7.2.

2. The prototype supports active-active configurations, two- and three-
site setups (third site only for quorum) and allows each service to be
individually configured.

3. The implemented prototype meets all test conditions and handles dis-
aster situations correctly.

4. If data writes are only allowed if the mirroring of the data works
correctly, automation of the replication function for cluster manager
integration is very complicated (as shown in section 4.6).

9.2 Possibilities of Future Enhancements

As mentioned in [KP03, p. 7], some companies are giving serious consid-
eration to a three-site strategy, each capable of running applications. This
kind of design could allow automatic continuation of services after a disas-
ter, even if data must be replicated to a second site to allow applications
to run. Different applications may run at any of the three sites. During
normal operations, data is mirrored between all sites. In case of a disaster
at one site, the remaining two sites start the application that ran at the
destroyed site. Data mirroring continues between the two remaining sites.
The automation of data replication in such a configuration would be rather
complex and will need future research.

56

CHAPTER 9. CONCLUSIONS 57

Another nice feature would be a support for multiple ESSes per site. The
current prototype could support multiple ESSes, but for a single service the
maximum is one ESS per site.

The implemented prototype supports synchronous replication only. Ad-
ditional support for asynchronous replication would allow the use of the
implementation also for longer distances.

Appendix A

Configuration Files

A.1 pprcvolume Configuration for nfsserver

Configuration file for automated PPRC management

(c) 2004 Werner Fischer, fischerw(at)at.ibm.com

License: GPL

Site names of site A and site B

siteAName="Mainz"

siteBName="Linz"

Name of the service that uses the volumes configured by this file.

serviceName="nfsserver"

Hostnames of hosts on site A and on site B. These names must be the same names

as returned by the hostname command on the individual hosts. Hostnames are

separated by spaces.

Attention: these parameters are essential as they are used to determine

whether the current host belongs to site A or B. If, for example,

the current host belongs to site A, the volumes on site A must be

configured as PPRC source if the host wants to access the volumes.

siteAhosts="minnie mickey"

siteBhosts="moe dell"

IP addresses or resolveable hostnames of copy services server A and B.

ipCSSA="9.155.51.231"

ipCSSB="9.155.51.233"

Location of security files for the ESS Storage Management CLI

(accessESSCLI) and the ESS Copy Services CLI (accessCSSCLI).

Attention: give full path names.

accessESSCLI="/opt/ibm/ibm2105cli/securityFileESSCLI.cfg"

accessCSSCLI="/opt/ibm/ibm2105cli/securityFileCSSCLI.cfg"

Task names for failover and failback tasks for both directions (from site A

to site B and from site B to site A).

siteAtoBfailover="EFO_GRP_B_A"

siteAtoBfailback="EFB_GRP_B_A"

siteBtoAfailover="EFO_GRP_A_B"

siteBtoAfailback="EFB_GRP_A_B"

Task names for terminating PPRC connections

siteAterminatePPRC="TSP_GRP_A_B_S"

siteBterminatePPRC="TSP_GRP_B_A_S"

58

APPENDIX A. CONFIGURATION FILES 59

Volume IDs on site A and site B that the application will use.

Attention: all these volumes must be included in the failover and failback

tasks above - otherwise the volumes won’t be mirrored correctly

by PPRC.

The volumes must be configured in the same order, so that the first volume

in siteAvolumes will be mirrored with the first volume in siteBvolumes, the

second with the second and so on.

siteAVolumes="40028296 40128296 40228296"

siteBVolumes="40028244 40128244 40228244"

This option can be useful when using consistency groups in PPRC paths. In case

the remote ESS (PPRC Peer) is not reachable, and all local volumes are PPRC

sources, this option prevents applications to start. This reaction can be

desirable if you only want to start applications if data can be mirrored to

the other site except for disaster failover situations.

Note: this option does not influence the behavior in case of a failover

operation. If the local volumes are PPRC target (which is the case at

secondary site in case of a disaster at the primary site) applications

are of course allowed to start after a successful PPRC failover

operation.

#noSyncBlockAppStart="yes"

This options allows the start of services even if no PPRC is set up and the

local volumes are in PPRC simplex mode. The default behavior is to refuse the

start of services if PPRC is not set up.

#allowSimplexStart="yes"

A.2 pprcvolume Configuration for mysql

Configuration file for automated PPRC management

(c) 2004 Werner Fischer, fischerw(at)at.ibm.com

Licence: GPL

Sitenames of site A and site B

siteAName="Mainz"

siteBName="Linz"

Name of the service that uses the volumes configured by this file.

serviceName="mysql"

Hostnames of hosts on site A and on site B. These names must be the same names

as returned by the hostname command on the individual hosts. Hostnames are

seperated by spaces.

Attention: these parameters are essential as they are used to determine

whether the current host belongs to site A or B. If, for example,

the current host belogs to site A, the volumes on site A must be

configured as PPRC source if the host wants to access the volumes.

siteAhosts="minnie mickey"

siteBhosts="moe dell"

IP addresses or resolveable hostnames of copy services server A and B.

ipCSSA="9.155.51.231"

ipCSSB="9.155.51.233"

Location of security files for the ESS Storage Management CLI

(accessESSCLI) and the ESS Copy Services CLI (accessCSSCLI).

Attention: give full path names.

accessESSCLI="/opt/ibm/ibm2105cli/securityFileESSCLI.cfg"

accessCSSCLI="/opt/ibm/ibm2105cli/securityFileCSSCLI.cfg"

APPENDIX A. CONFIGURATION FILES 60

Task names for failover and failback tasks for both directions (from site A

to site B and from site B to site A).

siteAtoBfailover="EFO_GRP2_B_A"

siteAtoBfailback="EFB_GRP2_B_A"

siteBtoAfailover="EFO_GRP2_A_B"

siteBtoAfailback="EFB_GRP2_A_B"

Task names for terminating PPRC connections

siteAterminatePPRC="TSP_GRP2_A_B_S"

siteBterminatePPRC="TSP_GRP2_B_A_S"

Volume IDs on site A and site B that the application will use.

Attention: all these volumes must be included in the failover and failback

tasks above - otherwise the volumes won’t be mirrored correctly

by PPRC.

The volumes must be configured in the same order, so that the first volume

in siteAvolumes will be mirrored with the first volume in siteBvolumes, the

second with the second and so on.

siteAVolumes="40328296 40428296"

siteBVolumes="40328244 40428244"

This option can be useful when using consitency groups in PPRC paths. In case

the remote ESS (PPRC Peer) is not reachable, and all local volumes are PPRC

sources, this option prevents applications to start. This reaction can be

desirable if you only want to start applications if data can be mirrored to

the other site except for disaster failover situations.

Note: this option does not influence the behaviour in case of a failover

operation. If the local volumes are PPRC target (which is the case at

secondary site in case of a disaster at the primary site) applications

are of course allowed to start after a successful PPRC failover

operation.

#noSyncBlockAppStart="yes"

This options allows the start of services even if no PPRC is set up and the

local volumes are in PPRC simplex mode. The default behavior is to refuse the

start of services if PPRC is not set up.

#allowSimplexStart="yes"

Appendix B

Contents of CD-ROM

File System: Joliet

Mode: Single-Session

B.1 Diploma Thesis

Path: /

da.dvi diploma thesis (DVI-File)
da.pdf diploma thesis (PDF-File)
da.ps diploma thesis (PostScript-File)

B.2 LaTeX-Files

Path: /latex/

da.tex main document
0 preface.tex Preface
0 kurzfassung.tex Kurzfassung
0 abstract.tex Abstract
1 introduction.tex . . . chapter 1
2 background.tex chapter 2
3 disasterRecovery.tex . chapter 3
4 dataReplication.tex . chapter 4
5 examples.tex chapter 5
6 problemStatement.tex chapter 6
7 implementation.tex . chapter 7
8 tests.tex chapter 8
9 conclusions.tex chapter 9

61

APPENDIX B. CONTENTS OF CD-ROM 62

appendix a.tex appendix A (Configuration Files)
appendix b.tex appendix B (Contents of CD-ROM)

B.3 Implementation

Path: /implementation/

pprcvolume pprcvolume-script
example.conf example configuration

B.4 Test configuration

Path: /testconfiguration/

mysql/ directory containing mysql configuration
nfsserver/ directory containing nfsserver configuration
nfsserver mysql.scenario scenario file for TSA

B.5 Bibliography

Path: /bibliography/

books/ directory containing books available in pdf
format

linux-2.4.26/ directory containing Linux 2.4.26 kernel
source

manuals/ directory containing manuals available in pdf
format

redbooks/ directory containing IBM redbooks
whitepapers/ directory containing whitepapers available in

pdf format

Bibliography

[BK03] Jean S. Bozman and Dan Kusnetzky. Planning for Business Con-
tinuity: HP-UX and Geographically Dispersed Clusters. Tech-
nical report, International Data Corporation, Framingham, MA,
USA, April 2003. IDC document 03C3670, online available at
ftp://ftp.hp.com/pub/enterprise/bus con IDC whitepaper.pdf.

[Cah03] Ben Cahill. Whatis OpenDLM. http://opendlm.sourceforge.net/
docs.php, 2003. copy on CD-ROM.

[Cea02] Guesavo Castets et. al. IBM TotalStorage Enterprise Storage
Server Model 800. International Business Machines Corporation,
International Technical Support Organization, San Jose, CA, USA,
second edition, October 2002. Redbook SG24-6424-01, copy on
CD-ROM.

[Cea04] Guesavo Castets et. al. Implementing ESS Copy Services in Open
Environments. International Business Machines Corporation, In-
ternational Technical Support Organization, San Jose, CA, USA,
fourth edition, February 2004. Redbook SG24-5757-03, copy on
CD-ROM.

[Dav00] Thomas Davis. Linux 2.4.26 kernel source, /documenta-
tion/networking/bonding.txt. http://www.kernel.org/pub/linux/
kernel/v2.4/linux-2.4.26.tar.bz2, 2000. copy on CD-ROM.

[Fre02] David Freund. Disaster Tolerant Unix: Removing the Last Single
Point of Failure. Technical report, Illuminata, Inc., Nashua, NH,
USA, August 2002. Online available at http://h71000.www7.hp.
com/openvms/whitepapers/Illuminata.pdf.

[Hew03] Hewlett-Packard Co., Palo Alto, CA, USA. Arbitration For Data
Integrity in ServiceGuard Clusters, November 2003. Manufacturing
Part Number: B7660-90078.

[Hew04] Hewlett-Packard Co., Palo Alto, CA, USA. Designing Disaster
Tolerant High Availability Clusters, March 2004. Manufacturing
Part Number: B7660-90014.

63

BIBLIOGRAPHY 64

[Ins04] Institute of Electrical and Electronics Engineers, Inc., Piscataway,
NJ, USA. IEEE Standard 802.1w-2001 for Local and metropolitan
area networks. Common specications. Part 3: Media Access Con-
trol (MAC) Bridges, Amendment 2: Rapid Reconfiguration, 2004.
online available at http://standards.ieee.org/getieee802/download/
802.1w-2001.pdf.

[Int03a] International Business Machines Corporation, Armonk, New York,
USA. HACMP Remote Copy: ESS PPRC Guide, July 2003. Pub-
lication Number SC23-4863-00, online available at http://publibfp.
boulder.ibm.com/epubs/pdf/c2348630.pdf.

[Int03b] International Business Machines Corporation, Armonk, New York,
USA. IBM TotalStorage Enterprise Storage Server Command-Line
Interfaces User’s Guide, November 2003. Publication Number
SC26-7494-03, online available at http://publibfp.boulder.ibm.com/
epubs/pdf/f2bc1i03.pdf, copy on CD-ROM.

[Kea04] George Kozakos et. al. Implementing ESS Copy Services with
IBM zSeries. International Business Machines Corporation, In-
ternational Technical Support Organization, San Jose, CA, USA,
February 2004. Redbook SG24-5680-03, copy on CD-ROM.

[KP03] R. F. Kern and V. T. Peltz. IBM Storage Infrastructure for Busi-
ness Continuity. International Business Machines Corporation, Ar-
monk, Now York, USA, Whitepaper, December 2003.

[Mit04] Christoph Mitasch. Server-Based Wide Area Data Replication for
Disaster Recovery. Master’s thesis, Fachhochschule Hagenberg,
Studiengang Computer- und Mediensicherheit, Hagenberg, Aus-
tria, 2004.

[MS03] Evan Marcus and Hal Stern. Blueprints for High Availability. Wiley
Publishing, Indianapolis, IN, USA, second edition, 2003.

[Rei00] Philipp Reisner. Festplattenspiegelung übers Netzwerk für die Re-
alisierung hochverfügbarer Server unter Linux. Master’s thesis,
Technische Universität Wien, Institut für Computersprachen, Vi-
enna, Austria, May 2000.

[Rob01] Alan Robertson. Resource fencing using STONITH. http://
linux-ha.org/heartbeat/talks/ResourceFencing Stonith.pdf, 2001.

[Str02] Hartmut Streppel. Capmus Clusters Based on Sun Cluster 3.0 Soft-
ware. Technical report, Sun Microsystems, Inc., Santa Clara, CA,
USA, November 2002. Part Number 817-0369-10, online available
at http://www.sun.com/solutions/blueprints/1102/817-0369.pdf.

BIBLIOGRAPHY 65

[Sun04] Sun Microsystems, Inc., Santa Clara, CA, USA. Sun Cluster 3.x
Hardware Administration Manual for Solaris OS, January 2004.
Part Number 817-0168-10, online available at http://docs-pdf.sun.
com/817-0168/817-0168.pdf.

[TE03] Ulf Troppens and Rainer Erkens. Speichernetze - Grundlagen
und Einsatz von Fibre Channel SAN, NAS, iSCSI und InfiniBand.
dpunkt.verlag, Heidelberg, Germany, 2003.

[Wea02] Richard Wilkins et al. Disaster tolerant wolfpack geo-clusters.
In Proceedings of the IEEE Internal Conference on Cluster Com-
putung (CLUSTER’02), Piscataway, NJ, USA, 2002. Institute of
Electrical and Electronics Engineers, Inc.

[Wea04] Cathy Warrick et. al. IBM TotalStorage Solutions for Disaster
Recovery. International Business Machines Corporation, Interna-
tional Technical Support Organization, San Jose, CA, USA, Jan-
uary 2004. Redbook SG24-6547-01, copy on CD-ROM.

[You97] Eric Youngdale. Linux 2.4.26 kernel source,
/drivers/scsi/scsi queue.c. http://www.kernel.org/pub/linux/
kernel/v2.4/linux-2.4.26.tar.bz2, 1997. copy on CD-ROM.

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

66

